Accepted Manuscript

Title: Development of a Conductivity-based Photothermal Absorbance Detection Microchip Using Polyelectrolytic Gel Electrodes

Authors: Honggu Chun, Patty J. Dennis, Erin R. Ferguson Welch, Jean Pierre Alarie, James W. Jorgenson, J. Michael Ramsey

PII: S0021-9673(17)30921-4

DOI: http://dx.doi.org/doi:10.1016/j.chroma.2017.06.053

Reference: CHROMA 358623

To appear in: Journal of Chromatography A

Received date: 2-4-2017 Revised date: 15-6-2017 Accepted date: 16-6-2017

Please cite this article as: Honggu Chun, Patty J.Dennis, Erin R.Ferguson Welch, Jean Pierre Alarie, James W.Jorgenson, J.Michael Ramsey, Development of a Conductivity-based Photothermal Absorbance Detection Microchip Using Polyelectrolytic Gel Electrodes, Journal of Chromatography Ahttp://dx.doi.org/10.1016/j.chroma.2017.06.053

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Development of a Conductivity-based Photothermal Absorbance Detection Microchip Using Polyelectrolytic Gel Electrodes

Honggu Chun,^{a,b} Patty J. Dennis,^a Erin R. Ferguson Welch,^a Jean Pierre Alarie,^a James W. Jorgenson^c and J. Michael Ramsey^a*

^aDepartment of Chemistry, University of North Carolina at Chapel Hill, Chapman Hall, CB#3216, Chapel Hill, NC 27599

^bDepartment of Biomedical Engineering, Korea University, Hana Science Hall 466, Seoul, Korea 02841

^cDepartment of Chemistry, University of North Carolina at Chapel Hill, Kenan Laboratories, CB#3290, Chapel Hill, NC 27599

*Corresponding Author Email address and phone number: jmramsey@unc.edu, 919-962-7492

Highlights

- Polyelectrolytic gel electrodes (PGEs) for a microfluidic conductivity-based photothermal absorbance detection system is developed.
- Both a 3-electrode system with AC voltages and a 2-electrode system with DC voltages were investigated.
- Comparable and superior sensitivity compared with a metal electrode chip can be obtained using a 3-electrode and a 2-electrode PGE microchip, respectively.
- Low detection limit of sub-nM is achieved with clear sample separation.

Abstract

The development and application of polyelectrolytic gel electrodes (PGEs) for a microfluidic photothermal absorbance detection system is described. The PGEs are used to measure changes in conductivity based on heat generation by analytes absorbing light and changing the solution

Download English Version:

https://daneshyari.com/en/article/7609791

Download Persian Version:

https://daneshyari.com/article/7609791

<u>Daneshyari.com</u>