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a  b  s  t  r  a  c  t

Orthogonality  metrics  (OMs)  for three  and  higher  dimensional  separations  are  proposed  as  extensions
of  previously  developed  OMs,  which  were  used  to evaluate  the  zone  utilization  of  two-dimensional
(2D)  separations.  These  OMs  include  correlation  coefficients,  dimensionality,  information  theory  metrics
and convex-hull  metrics.  In a  number  of these  cases,  lower  dimensional  subspace  metrics  exist  and  can
be readily  calculated.  The  metrics  are  used  to interpret  previously  generated  experimental  data.  The
experimental  datasets  are  derived  from  Gilar’s  peptide  data,  now  modified  to be  three  dimensional  (3D),
and  a comprehensive  3D  chromatogram  from  Moore  and  Jorgenson.

The Moore  and  Jorgenson  chromatogram,  which  has  25 identifiable  3D  volume  elements  or  peaks,
displayed  good  orthogonality  values  over  all dimensions.  However,  OMs  based  on discretization  of the  3D
space changed  substantially  with  changes  in binning  parameters.  This  example  highlights  the  importance
in  higher  dimensions  of having  an  abundant  number  of retention  times  as  data  points,  especially  for
methods  that  use discretization.  The Gilar  data,  which  in  a previous  study  produced  21  2D  datasets  by
the  pairing  of  7  one-dimensional  separations,  was  reinterpreted  to produce  35  3D  datasets.  These  datasets
show  a number  of interesting  properties,  one  of which  is  that geometric  and  harmonic  means  of  lower
dimensional  subspace  (i.e.,  2D)  OMs  correlate  well  with  the  higher  dimensional  (i.e.,  3D)  OMs.  The  space
utilization  of the  Gilar  3D  datasets  was  ranked  using  OMs,  with  the  retention  times  of  the  datasets  having
the  largest  and  smallest  OMs  presented  as graphs.  A  discussion  concerning  the orthogonality  of higher
dimensional  techniques  is given  with  emphasis  on molecular  diversity  in  chromatographic  separations.

In  the  information  theory  work,  an  inconsistency  is found  in previous  studies  of  orthogonality  using
the  2D  metric  often  identified  as %O.  A  new  choice  of metric  is  proposed,  extended  to higher  dimensions,
characterized  by mixes  of  ordered  and random  retention  times,  and applied  to the  experimental  datasets.
In 2D,  the  new  metric  always  equals  or exceeds  the  original  one.  However,  results  from  both  the  original
and  new  methods  are  given.

©  2017  Elsevier  B.V.  All  rights  reserved.

1. Introduction

The techniques known collectively as multidimensional liq-
uid chromatography are practiced typically with two columns,
whereby the effluent from the first column is provided to the second
column for further separation based on molecular structure. These
are referred to as two-dimensional (2D) separations [1]. While 2D
gas chromatography has been widely available for a number of
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years, instrumentation for 2D liquid chromatography (2DLC) is now
becoming widely available, and the ability to resolve compounds
with similar molecular structure has been invaluable in studies of
complex materials, most notably biomolecules.

Three-dimensional (3D) and higher dimensional separations
have been discussed for years, but only one report exists on compre-
hensive 3DLC instrumentation able to use three different columns
[2]. However, with increasing needs of speed and resolution for
demanding biomolecule characterization, more attention is being
given to using n chromatographic dimensions and a number of mass
spectrometry (MS) dimensions, which might include ion mobility
mass spectrometry, MS/MS  or a combination of other techniques.

Orthogonality metrics (OMs) have been used to measure space
occupancy and the uniformity of the spreading of components
within these spaces [3–9]. This has become important in one-
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dimensional (1D) separations in determining and optimizing the
resolution of specific components [6]. In 2D chromatography, OMs
[3–5,7–9] measure the utilization of the separation space with
occupancy metrics, peak spacing metrics and uniformity metrics,
among others. These metrics can be utilized to measure the effec-
tiveness of the separation and to optimize the separation.

Higher dimensional separations are indeed rare. One of these,
published by Moore and Jorgenson [2], is the separation of peptides
using 3D chromatography. In this experiment, the first dimension
column is a size exclusion chromatography (SEC) column, followed
by reversed-phase liquid chromatography (RPLC) column, followed
by a very fast optically-gated capillary zone electrophoresis (CZE)
experiment. As is a rather common practice, the columns and
techniques were chosen to put the slower separation in the first
dimension followed by faster and faster steps in succeeding dimen-
sions. This is due to the sampling requirements [1,10,11], which
dictate that the slower separations are typically put in the first
dimension and the fastest steps are performed in the last dimen-
sion.

In this paper, we explore some of the aspects of 3D and higher
dimensional OMs. The OMs  described here are extensions of known
2D OMs  and include correlation coefficients (CCs), dimensional-
ity, information theory metrics and convex-hull metrics. For the
dimensionality and information theory metrics, which employ dis-
cretization of retention times into bins, recommendations are given
to the number of bins and the implications of binning in higher
dimensions.

Two applications of 3D OMs  to experimental systems are dis-
cussed. First, a 3D dataset is reconstructed from the published 3D
comprehensive separation of Moore and Jorgenson [2]. Second, we
utilize the Gilar peptide data [7], which in a previous study [9] pro-
duced 21 unique 2D datasets by the pairing of 7 1D separations.
This data now is reinterpreted to produce 35 unique 3D datasets.
In all cases, datasets are m x 3 matrices, where the ith column
vector contains m retention times for the ith dimension. The eval-
uation of these datasets using 3D OMs  produces many interesting
insights that are discussed in detail and point out many aspects and
difficulties in analyzing and optimizing 3D separations.

With the exception of CCs, a global OM in 3D is available, along
with lower dimensional subspace OMs. For 3D systems, there are
3 2D subspace metrics based on paired dimensions. They will be
shown to be quite useful. This scheme can be extended to nD
(n–dimensional) systems, such that for n ≥ 3 all of the lower dimen-
sional subspace OMs  exist.

This work uncovers a problem with the previously derived 2D
OM from information theory known as %O [8]. We  will show that
this OM is not symmetrical with respect to the input data, and we
will derive a more universal equation able to be employed in any
number of dimensions. The analysis of the datasets shows the 2D
OMs  from the original and new methods are nearly equal, but we
prove the new method always gives the same or a greater OM than
the original one.

2. Mathematical development

2.1. Notation and terminology

The letter “D” in 1D, 2D, 3D, nD, etc., henceforth means both
“dimension” and “dimensional”, depending on context. Its dual
interpretation provides simplicity. The symbol D is the traditional
symbol for the OM,  dimensionality; it differs from these abbrevia-
tions in the absence of a number preceding it.

Various notations for column vectors of retention times are
used, depending on circumstances. Vector groupings are referred
to as pairs in 2D and triplets in 3D. In 2D, the individual vectors

are labeled X (first dimension) and Y (second dimension); in 3D,
they are usually X, Y, and Z (third dimension). In nD, they are X1,
X2,. . .Xn. Depending on circumstances, pairs and triplets are repre-
sented by letter or number combinations, e.g., XZ,  XYZ, and 246 (the
numbers are explained later). Individual coordinates in any vector
are represented by lower case letters, e.g., x, y, and z, and repre-
sent retention times of peaks. The notation style used here for the
most part is found in information theory texts, for example, in the
well-known book of Cover and Thomas [12].

Generic symbols for OMs  have no subscripts, e.g., dimensionality
D. Subscripts are used to identify specific types, e.g., D2D for 2D
dimensionality.

The information theory OM has the traditional name, orthogo-
nality. The word “orthogonality” also is used in its general sense to
indicate a good spreading of zones over a separation. We  have tried
to avoid confusion between the two  meanings through context.

Zones in the SEC and CZE dimensions of the Moore and Jor-
genson separation have elution times, not retention times, because
retentive chromatography was  not used. However, for consistency
we describe all such times as retention times and describe this 3D
separation as a 3D chromatogram. We  also use the older abbrevi-
ation, CZE, to conform to the Moore and Jorgenson chromatogram
reproduced here.

2.2. General properties of OMs

To be useful, OMs  must have some essential properties. The
first is the scale. The scale should be defined between 0 and 1, or
some other values that convey characteristics of zone ordering or
zone coverage. The CC analyses scale from 0 to 1 after a suitable
normalization. The information theory results are typically scaled
between 0 and 100%, although the 0–1 scale is more natural, and we
will use that scaling here. The fractal dimension scale is between 0
and DC, where DC is the number of chromatographic instrumental
dimensions, i.e., the number of columns that are used for successive
fractionation. The convex hull relative area, volume, or hypervol-
ume  in any number of dimensions varies between 0 and 1. These
scalings, with the exception of the fractal dimension, can be applied
so that an OM can be suitably normalized between 0 and 1 no matter
how many dimensions are utilized as the separation space.

Another important property is that OMs  should give the same
answer upon swapping the column data vectors. In other words,
the OMs  should preserve the data symmetry and give the same
answer for any order of the vectors. This is not to say that the order
in which the different dimensions of a multidimensional separa-
tion are developed is not important; obviously it is. However, the
vector order does not affect the intervals between these times, and
therefore should not affect the OM.  For example, in 2D, OM(X,Y)
should equal OM(Y,X), where OM is the specific orthogonality met-
ric calculation. In 3D, it should be true that OM(X, Y, Z) = OM(X, Z,
Y) = OM(Y, X, Z) = OM(Y, Z, X) = OM(Z, X, Y) = OM(Z, Y, X).

A few of these OMs  do not have this property of data symme-
try. For example, the Pearson and Kendall CCs have this property
while the Spearman CC does not, and this suggests that the Spear-
man  CC is not suitable for use as an OM.  Furthermore, the %O OM
[8] from information theory [12] does not have this property. How-
ever, on further inspection, a similar OM can be derived so that this
symmetry property is preserved. We derive such a metric below.

OMs  can be classified as non-discretized and discretized [9]. The
non-discretized metrics do not require the binning or scaling of
retention times, although scaling does not change the OM value.
Discretized OMs  require both binning and scaling.

The details of binning are introduced as needed. For consistency,
all retention times are scaled here over the range as 0–1 using the
maximum (max) and minimum (min) times of each dimension. For
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