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a  b  s  t  r  a  c  t

Accurate  analysis  of  chromatographic  data  often  requires  the  removal  of  baseline  drift.  A  frequently
employed  strategy  strives  to determine  asymmetric  weights  in  order  to  fit  a  baseline  model  by  regression.
Unfortunately,  chromatograms  characterized  by  a very  high  peak saturation  pose  a significant  challenge
to  such  algorithms.  In addition,  a low  signal-to-noise  ratio (i.e.  s/n  < 40)  also  adversely  affects  accurate
baseline  correction  by  asymmetrically  weighted  regression.

We  present  a baseline  estimation  method  that  leverages  a probabilistic  peak  detection  algorithm.  A
posterior  probability  of  being  affected  by a peak  is  computed  for each  point  in  the  chromatogram,  leading
to  a  set  of  weights  that allow  non-iterative  calculation  of  a  baseline  estimate.  For  extremely  saturated
chromatograms,  the  peak  weighted  (PW)  method  demonstrates  notable  improvement  compared  to  the
other  methods  examined.  However,  in  chromatograms  characterized  by low-noise  and  well-resolved
peaks,  the asymmetric  least  squares  (ALS)  and the  more  sophisticated  Mixture  Model  (MM)  approaches
achieve  superior  results  in significantly  less  time.  We  evaluate  the  performance  of these  three  baseline
correction  methods  over  a  range  of chromatographic  conditions  to  demonstrate  the  cases  in  which  each
method  is  most  appropriate.

© 2016  Elsevier  B.V.  All  rights  reserved.

1. Introduction

The use of chemometric methods for preprocessing chromato-
graphic data has become a ubiquitous component in analytical
chemistry. A common convention from the chemometric school
of thought is to consider a chromatogram as being composed of
three (additive) components, namely: signal, baseline, and noise
[1,2]. An abundance of literature has been published regarding the
preprocessing of chromatographic data [1–4] such that informa-
tive features can be extracted from the raw chromatographic data.
This involves removing the perturbing components from the chro-
matographic signal, these artifacts are baseline drift and noise. A
typical objective of data preprocessing methods is to arrive at a set
of peak areas corresponding to particular compounds of interest,
which forms the basis of subsequent multivariate data analysis.

Chromatographic baseline drift impedes the accurate quantifi-
cation and interpretation of analytical data. The most widespread
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approaches use an asymmetrically weighted least squares regres-
sion procedure to determine the best fit baseline model [1–3,5–8].
For asymmetric weighting, a prerequisite condition is the determi-
nation of a series of weights intended to emphasize the effect of
points belonging to baseline regions while suppressing the influ-
ence of points affected by peaks [9–11]. The probability that a point
belongs to the baseline is used to minimize a penalty function of
asymmetrically weighted deviations from a baseline of variable
smoothness. Many strategies exist to estimate what points belong
to the baseline, comprehensive summaries are given in [10,6].
Including several non-parametric methods for baseline correction
[12,6].

We note that despite their widespread use, asymmetrically
weighted least squares regression approaches often fail when chro-
matograms get very dense [11] or very noisy [5,13]. Even more
recent work [14], using a Mixture Model formulation to assign
points to a baseline component have difficulty when peak den-
sity becomes very high. Unfortunately, this is often the case with
real chromatography; realistic estimates of component separations
in chromatographic systems have suggested that for real applica-
tions, peak co-elution (i.e. regions of high density) are unavoidable
[15,16]. We  present a new method for the estimation of baseline
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which leverages a probabilistic approach to peak detection [17].
This method shows promising results, especially in cases with high
peak density and a low signal to noise ratio. Results are shown for
a range of chromatographic saturations [15] and chromatograms
containing a variety of peak heights, from very near the noise level
to 100 times greater.

2. Theory

The asymmetric least squares solution (ALS) proposed by Eilers
and Boelens [9,10] strives to estimate a smoothed signal z of length
n and sampled uniformly. The estimation of z strives to balance
two conditions: consonant with y (the raw measurement from the
chromatograph) having the same dimensionality as z and greater
smoothness characteristics. These two characteristics are balanced
by an additional parameter �, which must be tuned by hand, how-
ever likely varies in the range 102 ≤ � ≤ 109. Ultimately, the ALS
method also requires the introduction of a weight vector w, having
the same dimension as the signal y. This strategy has inspired many
variations [5,14,18] on determining the weight vector w required to
estimate a smooth baseline that allows points unaffected by peaks
to exert a greater influence on the resulting curve. In this paper we
will compare the asymmetric least squares solution (ALS) [10], a
subsequently published Mixture Model based estimation (MM)  of
these weights [14], and finally our own method, using a probabilis-
tic peak detection [17] strategy, henceforth abbreviated as PW for
peak weighted.

In the following sections, the main idea of each method is
explained, adhering as much as possible to the original notation
used in published materials. The original cited sources should be
consulted for in-depth explanation. All three methods approach the
problem of assigning a probability that a particular point belongs to
the baseline. The PW method may  be seen as the most sophisticated
due to complexity of the approach leading to the determination
of this probability (denoted as p). The MM model relies on the
Expectation Maximization (EM) algorithm to arrive at this poste-
rior probability, denoted r in later sections. The ALS method may  be
seen as coarsely approximating this probability in terms of a high
or low value, its quantity denoted by the parameter � introduced
later. The computation of these probabilities sits at the crux of the
differences observed in the performance between the methods and
is further explored throughout this manuscript.

2.1. Weights calculated by ALS method

The original asymmetric least squares approach (ALS) relies on
a minimization of the objective function S�(y, z, w) such that z
does not deviate from the original signal y to a great extent, while
exhibiting a greater degree of smoothness than y. This concept of
smoothness is expressed as:

�2
zi

= (zi − zi−1) − (zi−1 − zi−2) (1)

�2
zi

1 calculated for i = 3, 4, . . . n to avoid inaccuracies at the begin-
ning of the signal. The objective function S�(y, z, w) in Eq. (2) is
defined as

S�(y, z, w)  =
∑

i

wi(yi − zi)
2 + �

∑
i

(�2
zi

)
2

(2)

An iterative solution is proposed in [10] that must give considerably
more weight to values that lie below the trend line (since peaks will
lie above the trend line). So iterative reweighing is performed such

1 �2
zi

term notation is adopted from original publication [10], is not a squared
term.

that wi = � if yi > zi and wi = 1 − � otherwise. Here � is a scalar,
user defined parameter where 0 < � < 1. This introduces a degree of
coarseness to the weights, as each element in w may only assume
one of two values based on the choice of �. Finally, the values for
the baseline trend are expressed in Eq. (3).

(W + �DT D)z = Wy  (3)

where W = diag(w) and D = I ◦ (�2
z ∗ (�2

z )
T
), these can get quite

large as w has the same dimensionality as the chromatographic
signal. The baseline values z can then be solved explicitly via a
Cholesky factorization.

2.2. Weights calculated by MM method

The Mixture Model method (MM)  [14], relies on a calculation of
the posterior probability that a point in the chromatogram belongs
to the baseline. Points (yi) associated with the baseline are assumed
to be drawn from the normal density function g(yi|�, �) where
� denotes the mean and �, the standard deviation. Those points
contained in chromatographic peaks are assumed to follow an
unknown probability density h(yi − �). Therefore, for every point
yi in the chromatogram a probability for belonging to the baseline
can be calculated as shown in Eq. (4).

ri = �g(yi|�, �))
(�g(yi|�, �) + (1 − �)h(yi − �))

, (4)

where � is the mean unknown background level, � is the unknown
standard deviation and � is the unknown prior mixing proportion
� ∈ [0, 1]. To estimate the components of the mixture, the authors
used the Expectation Maximization (EM) algorithm. In the E step,
the current values of the parameters are used to calculate the pos-
terior probabilities (ri in Eq. (4)) for baseline and peaks of each point
in the chromatogram. Further, in the M step, the parameters ri, �,
�, and the estimate for h(·) are updated, given the calculated prob-
abilities. The baseline estimate � is modeled using P-splines (i.e.,
penalized B-splines). In this implementation the objective function
S� is minimized:

S�(y, ˛) = ||y − B˛||2 + �||Dd˛||2, (5)

where y is the original signal, B is the basis splines matrix with
dimensionality (n × m), containing m splines for the n data points
present in chromatogram. The coefficients  ̨ (an m × 1 vector) are
fit, � is a penalty parameter, and Dd is a matrix containing the coef-
ficient of the dth order differencing operator. For a summarization
of the signal with precisely 7 splines m = 7 and d = 3, the matrix D3
can be written as follows:

D3 =

⎛
⎜⎜⎝

−1 3 −3 1 0 0 0

0 −1 3 −3 1 0 0

0 0 −1 3 −3 1 0

0 0 0 −1 3 −3 1

⎞
⎟⎟⎠

Posterior probabilities of belonging to the baseline are now
introduced in Eq. (6) as weights, where ri is an n × 1 vector. The
introduction of posterior probabilities means that the objective
function gets modified into the following form:

S∗
� = (y − B˛)T R(y − B˛)  + �||Dd˛||2, (6)

with R = diag(ri). Hence, the solution for the coefficients is:

ˆ̨  = (BT RB + �DT
dDd)

−1
BT Ry (7)

Here we  used d = 3 as recommended in [14]. Low values of ri indi-
cate little influence on the baseline. This method is similar to the
ALS method with the exception of the probabilistic weights in the
matrix R. The MM algorithm uses the ALS approach to calculate
initialization values for the EM algorithm.
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