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a  b  s  t  r  a  c  t

A  novel  method  based on  the  maximal  information  coefficient  (MIC)  is developed  to assess  the  orthog-
onality  of comprehensive  two-dimensional  separation  systems.  The  proposed  method  is based  on a
modification  of  Marriott’s  method,  which  was  previously  reported  in  2013.  Marriott’s  method  relies
on  the  calculation  of  two separate  parameters.  The first  term  is  Cpert which  defines  the  peak coverage
percent  in separation  space,  and  the  second  is  Cpeaks which  corresponds  to  2-D  distribution  correlation  of
the  peaks.  Marriott’s  method  for estimating  the  values  of Cpeaks is based  on the  calculation  of  the  coeffi-
cient  of  determination  (R2) between  the  retention  indices  of the  peaks.  Herein,  we present  some  examples
where  R2 is  an  inefficient  way  to  estimate  the  values  of  Cpeaks. The  results  in this  work  illustrate  that  when
there  are  either  functional  or non-functional  local  dependencies  between  the  distributions  of the  peaks,
R2 values  fail  to  thoroughly  estimate  the  values  of Cpeaks. We  proposed  using  the  MIC  instead  of  R2 to  esti-
mate  the  values  of Cpeaks for orthogonality  calculations.  Simulations  of  comprehensive  two-dimensional
gas  chromatograms  were  performed  using  the  Abraham  solvation  parameter  model  in order  to gener-
ate examples  for  orthogonality  assessment.  The  results  indicate  that  the  suggested  modifications  in  this
work  correct  the  shortcomings  of  Marriott’s  model,  and the  proposed  equation  accurately  measures  the
column dependencies  in  2-D separation  systems.

© 2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Due to the complicated nature of biological and environmental
samples, there is a huge demand in analytical chemistry for per-
forming separations in two or three dimensions [1–4]. In recent
years, gas chromatography setups have been designed in multi-
dimensions in order to create capabilities for resolving complicated
mixtures, such as proteins and petroleum samples [5,6]. The basic
logic for applying comprehensive two-dimensional separations is
to obtain more information than from traditional one-dimensional
techniques. In a simple view, if the efficiency in two separation
spaces increases separately, the overall separation efficiency should
also increase. Mathematically explained, the peak capacity in 2-D
separation (P2-D) is described by P2-D = P1P2 and can be calculated
as the multiplication of peak capacities of both dimensions (P1,
P2). This definition is valid only when the selectivity of separations
is completely independent and the entire 2-D separation space is
randomly populated by the peaks. The orthogonality of the chro-
matographic columns is an important issue when trying to resolve
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complicated samples in 2-D systems. Selection of proper columns
as supporting media for separation spaces is critical to yield maxi-
mum  capacities and should be investigated before analysis [7–9].

Through a comprehensive study on different LC systems, Gilar
et al. [10] introduced a simple geometrical model to assess the
orthogonality of different 2-D separation modes. They tried to
bin the whole separation space and calculate the number of bins
occupied by data points (˙bins). If the total number of bins in a
separation space is shown by Pmax, then the orthogonality of the
2-D separation system is defined by the following equation:

O = ˙bins −
√

Pmax

0.63Pmax
(1)

Implementation of this equation on some simulated and real 2-D
separation protocols revealed that the calculated values of orthog-
onality depend only on space coverage and not on the distribution
patterns of the peaks [11]. In order to overcome this problem,
Marriott et al. [11] introduced a method that uses information of
peak distributions in a 2-D separation system. In their method,
orthogonality was  theoretically defined as the multiplication of two
independent parameters:

O = Cpert × Cpeaks (2)
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Cpert and Cpeaks correspond to the bin coverage percent and
the correlation distribution pattern of 2-D peaks, respectively.
Orthogonal separation is achieved if Cpert and Cpeaks attain one
simultaneously, but complete non-orthogonality is achieved if
either of them attains zero. In Marriott’s formula, Cpert and Cpeaks
are defined by Eqs. (3) and (4), respectively:

Cpert = ˙bins

0.63Pmax
(3)

Cpeaks = 1 − R2 (4)

Following the above expressions, the orthogonality of a 2-D sys-
tem is defined by Eq. (5):

O = ˙bins

0.63Pmax
× (1 − R2) (5)

where R2 is the regression coefficient for the peaks propagated in 2-
D separation space. Marriott’s work revealed that linear regression
analysis is effective for discovering quantitative relationships of
retention times in two separation dimensions. The evident advan-
tage of Marriott’s work is the reasonable employment of occupation
of bins and further refinement of the distribution of the peaks with
original retention data information. They compared their method
with previously reported techniques and in most cases, their algo-
rithm had superior performance for calculating orthogonality of
2-D separation systems [11].

In the present study, we detect some shortcomings in Eq. (5) for
calculating the 2-D orthogonality. We  found that the R2 parame-
ter itself is not enough to consider the shape of peak distributions
in 2-D space. Instead, we propose a more powerful and general
parameter, the maximal information coefficient (MIC), to assess the
distribution patterns of peaks in separation space [12]. While R2 is
a useful parameter for measuring the linear relationships, the MIC
captures all types of dependencies between peaks in 2-D space. In
reality, the overall distribution patterns of the peaks are not lin-
ear in most cases and therefore, the R2 parameter is not enough
to explain the dependency in such distributions. In this paper, we
present some examples which show in detail the inadequacy of
R2 for calculating the orthogonality. Then, we  show how the MIC
solves this problem. Briefly, we compare two methods for calculat-
ing the orthogonality in 2-D separation protocols: (1) Eq. (5), and
(2) using MIC  values instead of R2 in Eq. (5). The results in this work
reveal the superiority of the latter method.

Finally, we  simulate some GC × GC chromatograms using the
Abraham solvation parameter model (ASPM) [13,14] and present
the advantages of the newly suggested formula for measuring the
degrees of orthogonality in 2-D systems.

2. Theoretical basis

Marriott’s method captured the effects of both bin coverage and
peak distributions for estimating the orthogonality. Inspection of
Eq. (5) reveals that Cpert measures the effect of peak coverage and
Cpeaks corrects the formula for the linear dependencies between the
retention times of the peaks in two separation spaces. For example,
for a 2-D chromatogram when peaks are partially propagated on a
linear line, R2 value is high and Cpeaks is on its minimum values and
therefore, the orthogonality of the separation system is rather low.
Generally, for cases where the peaks are linearly dependent or even
independent, Eq. (5) works well. However, the problem arises when
complicated dependencies are seen between the retention times of
the peaks in two separation spaces. In these situations, we  suggest
the use of the MIC  instead of R2 for estimating the orthogonality.
The MIC  is able to capture all types of functional and even non-
functional relationships between retention indices of peaks in 2-D
space.

2.1. Maximal information coefficient

The MIC  belongs to a larger class of maximal information-based
nonparametric exploration (MINE) [12,15] techniques for discov-
ering and classifying complicated associations. This parameter was
introduced in 2011 by Reshef et al. [12] for identifying interest-
ing relationships between pairs of variables in large data sets. MIC
captures a wide range of associations and provides an index that
thoroughly determines different types of dependencies between
two variables. In order to calculate the MIC  for two x and y vari-
ables, the algorithm grids the space of the two studied variables.
The degree of gridding is explored up to the highest grid reso-
lution based on the sample size in x and y. In the next step, the
highest possible mutual information achieved by any x-by-y grid
is computed. The calculated mutual information for different grid
sizes is normalized to ensure a fair comparison between grids of
different sizes and eventually, the MIC  will be the maximum calcu-
lated normalized mutual information. More detailed descriptions
about the theory of MIC  can be found in literature [12]. For com-
pletely independent variables, the value of the MIC  is near zero
and for functional or non-functional related variables, it is equal
to one. When there are some partial dependencies between two
variables, the value of the MIC  lies between zero and one. Previous
investigations on the use of the MIC  revealed that there is a good
correlation between the MIC  and R2 values for linear distributions
[12]. However, when analyzing real datasets, researchers found
particular distributions with high MIC  and low R2 values [12]. We
believe these types of distributions make mistakes when consider-
ing R2 for orthogonality calculations in GC × GC setups. Following,
we present some examples which show the superiority of the MIC
over R2. Some simulated distributions are shown in Fig. 1. For all of
the shapes, the values of R2 are small or even near zero. However,
the MIC  captures the sinusoidal, ellipsoidal, and circular dependen-
cies. As can be seen in this figure, R2 is not sensitive to these types
of dependencies and therefore, the calculation of Cpeaks by Eq. (5)
has some detectable shortcomings. The differences between the
calculated values of R2 and the MIC  in Fig. 1 clearly show that the
R2 values fail to capture complicated peak distributions. It is worth
mentioning that some 2-D profiles, such as D,  E, F, G and L in Fig. 1
can be seen in different real GC × GC chromatograms in literature
[16–19]. Therefore, implementation of the MIC  instead of R2 would
be a good suggestion. We  implemented this modification in Eq. (5)
to address this problem:

O = ˙bins

0.63Pmax
× (1 − MIC) (6)

Briefly, we  believe Eq. (6) is superior to Eq. (5), and this hypoth-
esis is explored and tested in the next sections using simulated and
reconstructed 2-D chromatograms.

3. Experimental

3.1. Abraham solvation parameter model

In order to simulate the GC × GC chromatograms in this work,
the Abraham solvation parameter model (ASPM) has been used.
This method proposes a linear model to predict the retention
indices of solutes in different chromatographic columns. According
to the ASPM, the retention indices are described using the following
equation:

I = l′L′ + s′S′ + a′A′ + b′B′ + e′E′ + c′ (7)

where L′, S′, A′, B′ and E′ are the solute parameters and represent
the size, dipolarity/polarizability, hydrogen bond acidity, hydrogen
bond basicity, and excess polarizability of the solute, respectively.
The parameters l′, s′, a′, b′, e′, and c′ are system constants that



Download	English	Version:

https://daneshyari.com/en/article/7611370

Download	Persian	Version:

https://daneshyari.com/article/7611370

Daneshyari.com

https://daneshyari.com/en/article/7611370
https://daneshyari.com/article/7611370
https://daneshyari.com/

