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a  b  s  t  r  a  c  t

Taylor  Dispersion  Analysis  (TDA)  in the  presence  of interactions  between  solutes  and  capillary  walls  yields
inaccurate  results  for  the  diffusion  coefficients  of  the  solutes  because  the  resulting  concentration  profiles
are broadened  and  asymmetric.  Whilst  there  are  practical  ways  of mitigating  these  interactions,  it is not
always  possible  to eradicate  them  completely.  In  this  paper,  an  analytical  method  of  mitigating  the effects
of the  adsorptions  is presented.  By  observing  the  dispersion  of  the  solute  molecules  at two  detection
points  and using  the  expected  relations  between  measured  parameters,  such  as the  standard  deviations
and  peak  amplitudes,  the  dispersive  components  of  the  profiles  were  isolated  with  a  constrained  fitting
algorithm.  The  method  was  successfully  applied  to lysozyme  and  cytochrome  C which  adsorb  onto  fused
silica capillary  walls.  Furthermore,  this  illustrates  an  advantage  of  using  the  fitting  method  for  Taylor
Dispersion  Analysis.

© 2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Taylor Dispersion Analysis (TDA) is a fast and absolute method
for determining the diffusion coefficients, and hence the hydro-
dynamic radii of molecules. The method, sometimes referred to as
Taylor-Aris dispersion, was first described by Taylor in his classic
paper [1]. In 1956, Aris developed the method further by accounting
for the longitudinal diffusion of the molecules [2].

This technique was first applied to the determination of gaseous
[3] and then liquid diffusion coefficients [4–6]. With the use of
fused silica capillaries, TDA regained interest and has been used to
analyze amino acids, peptides, proteins, small molecules, macro-
molecules, nanoparticles and biosensors [7–23].

A requirement for the accurate determination of the diffusion
coefficients of injected solutes is that the solute molecules do not
adsorb onto the capillary walls. Such interactions can arise when
there is a force of attraction between unshielded charges on the
solute molecules and exposed charges on the capillary walls. For
example, the surface of a fused silica capillary is covered in silanol
groups (Si OH) which can ionize at pH values of 2 and above to form
negatively charged groups (Si O−) [24]. Methodologically, this
poses a problem for TDA of molecules with net regions of positive
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charge, as the resulting electrostatic attraction between the molec-
ular surface and the capillary wall alters the solute’s dispersion as
it travels through the capillary. As a result, the observed concentra-
tion distributions (taylorgrams) are asymmetric with pronounced
tailing. Fig. 1 shows the taylorgrams obtained for a series of concen-
trations of lysozyme prepared in phosphate buffered saline solution
which interact with a fused silica capillary. Note that the tailing
observed becomes less pronounced with concentration.

A number of experimental approaches can be employed to
minimize or prevent capillary interactions due to electrostatic
attraction. These strategies focus on modification or attenuation
of the charge on either the capillary, the solute medium or the
molecule itself. Such approaches are well-documented in cap-
illary electrophoresis literature and reviews on the subject are
available [24–26]. These include the use of additives in the car-
rier medium to compete with the solute molecules for charged
sites on the capillary and the use of coated capillaries. How-
ever, these approaches may  not always be suitable or sufficiently
successful.

The diffusion coefficient of injected solutes undergoing Tay-
lor dispersion can be deduced by fitting Taylor’s solution to the
taylorgrams [27]. Alternatively, this can be achieved by calculat-
ing the moments of the profile [3–8,12,28,29] or by measuring its
height and area [30]. The analysis can either be carried out at a sin-
gle detection point or at two spatially separated detection points.
These methods are referred to as single detection TDA and double
detection TDA [31–33] respectively.
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Fig. 1. Taylorgrams showing the effects of solute–capillary interactions.

The concentration distribution C which arises at a time t when
a solute undergoes Taylor dispersion is given by [1]:

C ∝ C0

√
tr

t
e− u2(t−tr )2

4kt (1)

where C0 is the initial solute concentration, tr is known as the mean
residence time, u is the mean flow speed of the carrier solution and
k is the dispersion coefficient.

At large values of t, Eq. (1) is approximated by a Gaussian distri-
bution [1]:

C ∝ Ae
− (t−tr )2

2�2 (2)

where A is the peak amplitude, the dispersion coefficient k is related
to the standard deviation of the Gaussian � by

k = u2�2

2tr
(3)

This is applicable to single detection TDA where only one
standard deviation is measured. In double detection TDA, the dis-
persion coefficient is determined from the standard deviations of
the taylorgrams, �1 and �2, at the points and the respective mean
residence times, t1 and t2:

k = u2(�2
2 − �2

1 )
2(t2 − t1)

(4)

The diffusion coefficient D and hydrodynamic radius Rh are
related to k by:

D = r2
c u2

48k
(5)

Rh = kBT

6��D
(6)

where rc is the capillary radius, kB is Boltzmann’s constant, T is
the temperature and � is the viscosity of the carrier solution. By
equating Eqs. (3) and (4), it can be seen that there are relationships
between the measured parameters at the two detection points.

Fig. 2 shows a typical capillary geometry where l1 and l2 are the
distances from the point of solute injection to the centers of the
two detection points.

If the injection plug length li of the solute in a carrier solution
moving at speed u is accounted for in Eq. (3), the following ratios
are deduced to exist between the measured parameters at the two
detection points in the absence of solute–capillary interactions:
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where �2
i

= l2
i
/12u2 [13]. It should be noted that this estimate for

�i is based on the assumption that the initial plug has a rectangular
cross-section which is not strictly true for TDA. A more rigorous
treatment would attempt to quantify the small amount of disper-
sion that occurs during the injection [34–36].

Agreement with these ratios (henceforth referred to as Taylor
dispersion ratios) during measurements can be used to confirm
that the solute has undergone ideal Taylor dispersion. Typically,
deviations from these ratios are observed in the presence of
solute–capillary interactions due to the asymmetric broadening of
the Taylorgrams as shown in Fig. 1. This results in inaccuracies in
the estimated diffusion coefficients. To date, a range of theories
have been developed to account for the effects of a variety of inter-
actions on the dispersion of a solute and include mass exchanges
between phases of the solute [37,38], reactive gases [39], elec-
trokinetic effects [40] and dead zone effects in streams [41]. These
studies incorporate solute transport models which divide the solute
into a dispersive component (or bulk flow region) which under-
goes Taylor dispersion and an interactive component (or slow/dead
zone) which contributes the asymmetry to the profile. If the two
components are assumed to be independent (as can be the case
when the solute–capillary interactions are moderate), it may  be
possible to isolate the dispersive components of the profile.

In this paper, the Taylor dispersion ratios will be used to con-
strain the fitting algorithm used in generic double detection TDA  in
order to isolate the dispersive components of the broadened pro-
files. This is the novelty of the method. In this way, only solutions
which can arise feasibly as a result of Taylor dispersion will be con-
sidered by the algorithm when searching for the best fits to the
taylorgrams. The ratios ensure that the parameters used to compute
the diffusion coefficient are consistent across the two detection
points and thus mitigate the effects of the interactions on the anal-
ysis. It may  be described conceptually as the use of the solution
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Fig. 2. Geometry of a capillary with two detection points.
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