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a  b  s  t  r  a  c  t

Band  target  entropy  minimization  (BTEM)  is a  self-modeling  curve  resolution  (SMCR)  approach  relying  on
non-negative  criterion  and minimization  of Shannon  entropy.  In this  study,  BTEM  algorithm  was  applied
to  retrieving  the information  of  individual  components  from  overlapping  gas  chromatography–mass
spectrometry  (GC–MS)  data. The  algorithm  starts  with  dividing  the  whole  data  into  bands  along  the
retention  time.  In each  band,  singular  value  decomposition  (SVD)  is used  to decompose  the  data  into
scores  and  loadings.  Because  the  pure  chromatographic  signal  possesses  the  lowest  Shannon  entropy,
the  chromatographic  signal  of  each  component  can  be  constructed  by  optimizing  the  combination  of
the  loadings  with  minimal  Shannon  entropy  under  non-negative  criterion.  To  show  the  efficiency  of  the
algorithm,  a  simulated  four-component  overlapping  GC–MS  data  and  an  experimental  GC–MS  data  of  18
organophosphorus  pesticide  mixture  are  investigated.  The  results  show  that  both  the  chromatographic
profiles  and  mass  spectra  of the  components  can  be  successfully  extracted  from  the  overlapping  signals.

© 2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Chemometrics has provided an alternative way for improving
the efficiency of hyphenated chromatographic techniques for com-
plex sample analysis [1–3]. A large number of methods have been
developed based on chemical factor analysis (CFA), such as evolv-
ing factor analysis (EFA) [4–6], window factor analysis (WFA) [7,8],
heuristic evolving latent projections (HELP) [9,10] and target factor
analysis (TFA) [11]. These methods are widely applied to resolu-
tion of multicomponent system such as traditional Chinese herbal
medicine [12]. However, there are still practical difficulties in CFA
when the data matrices are irregular compared with theoretical
model, for example when high level noise exists in the analyz-
ing signal. Subsequently, multivariate curve resolution-alternating
least squares (MCR-ALS) [13–16] was developed for resolution of
overlapping signals via an alternating least square algorithm under
the constraints of non-negativity and unimodality. With the devel-
opment of analytical instrumentation, second and even higher
dimensional data were generated and analyzed by high order cal-
ibration methods. Parallel factor analysis (PARAFAC) [17,18] and
alternating trilinear decomposition (ATLD) [19,20] have been pro-
posed as trilinear methods with the second-order advantage. These
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methods make it possible to quantify the interested components
even in the presence of unknown complex interferences. In addi-
tion, immune algorithm (IA) [21,22] and independent component
analysis (ICA) [23] have successfully applied for resolution of over-
lapping GC–MS signals in our previous work. All these works have
shown that chemometric techniques can enhance the efficiency of
hyphenated instruments in analyzing complex samples.

Band target entropy minimization (BTEM) [24,25] is a self-
modeling curve resolution (SMCR) method for recovering the
spectrum of the component from overlapping spectra. The over-
lapping data can be decomposed by singular value decomposition
(SVD) into scores and loadings. Loadings contain multiple com-
ponent abstract spectra information. The spectrum of a pure
component can be reconstructed by optimizing the combination of
loadings. The key step in the algorithm is the optimization of combi-
nation. According to the assumption of the algorithm, the spectrum
of a pure component owns the lowest value of Shannon entropy
[26] compared with the overlapping spectra. Consequently, the
optimization of combination is to minimize Shannon entropy of
the reconstructed spectrum under non-negative criterion. The effi-
ciency and accuracy of BTEM algorithm have been tested in the
analysis of Fourier transform infrared spectroscopy (FTIR) signals
[24,25,27]. Even the signal of a component at trace level of concen-
tration can be correctly extracted [24]. Moreover, BTEM algorithm
has been used to analyze the signals of Raman [28], mass spec-
trometry (MS) [29], nuclear magnetic resonance (NMR) [30,31],
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powder X-ray diffraction (XRD) [32] and ultraviolet–vis (UV–vis)
spectroscopy [33,34]. Compared with the resolution approached
introduced above, the advantage of BTEM is no need to know the
accurate component number, estimations of starting spectra in the
optimization, and the information of component contained in the
mixture. For example, when IA is used, the information of compo-
nent contained in the mixture must be provided because IA is a
method based on curve fitting to extract the contribution of each
component to the total signal by projection and subtraction. On the
other hand, when BTEM is used for high-dimensional data, unfol-
ding into two dimensional data is needed. In such cases, methods
like PARAFAC and ATLD are more suitable to directly deal with high
dimensional data. ICA can be used for direct resolution of overlap-
ping signals, the number of independent components, however, is
needed before the calculation.

In this study, BTEM was used to retrieve the informa-
tion of individual components from highly overlapping gas
chromatography–mass spectrometry (GC–MS) data. SVD is used
to decompose the data into scores and loadings. By optimizing
the combination of loadings with minimal Shannon entropy under
non-negative criterion, the chromatographic signal of a pure com-
ponent can be calculated. Two datasets, including a simulated and
an experimental GC–MS data, are used to investigate the perfor-
mance of the method.

2. Theory and calculations

A GC–MS data X of multicomponent mixture can be described
as a product of the mass spectra S and chromatographic profiles C
of its components.

Xn×m = SC + E (1)

where n and m denote the number of m/z  channel and retention
time sampled in the experiment, respectively. E is experimental
error.

The data can be decomposed into scores P and loadings V by
SVD,

X = PVT (2)

where superscript T denotes the transposition. V contains multi-
ple component abstract chromatogramphic information. With the
combination of the loadings, the chromatogram of a component
can be obtained according Eq. (3).

Ĉ1×m = R1×zVT
z×m (3)

where Ĉ denotes the estimated chromatographic profile of a com-
ponent and R denotes the rotation vector. z is the factor number
used for the construction, which was determined according to the
cumulative variance proportion. Cumulative variance proportion
is a percentage of the variance explained by the first z loadings in
the total variance of the data. It reflects the amount of information
included in the z loadings.

In general, R1×z is initialized randomly, and then optimized by
sequential quadratic programming (SQP) algorithm [35] to sub-
ject Eq. (4). Global convergence of SQP is established under a
reformulation of the complementarity condition combined with a
classical penalty function method for solving constrained optimiza-
tion problems. Therefore, the ambiguities for R can be overcome.

arg min

(
−

M∑
m=1

hm ln(hm) + P

)
(4)

The former part of Eq. (4) is the Shannon entropy criterion
defined in Eq. (5) and the latter part of Eq. (4), P, is defined as the

Fig. 1. Simulated (a) and the retrieved chromatographic profiles with different band
position (b–d). Retrieved profiles are plotted in different color, the dash line repre-
sents the total signal of the four simulated peaks and the short dash line represents
a  summation of the calculated signals.

product of the quadratic sum of the negative elements in Ĉ1×m to
ensure non-negativity [24].

hm = |ĉm|∑M
m=1|ĉm|

(5)

where ĉm is the element in Ĉ1×m, || denotes the absolute value.
When the chromatographic profiles of all the components are

constructed, mass spectra can be calculated using Eq. (6).

Ŝ = XĈ
T
(ĈĈ

T
)
−1

(6)

In practical application, GC–MS data alone retention time con-
sists of a series of non-negative Gaussian peaks. When the whole
data is used in the calculation of BTEM, the presence of multiple
local minimum may  affect the efficiency of the optimization. Thus,
the GC–MS data needs to be divided into several bands along the
retention time and the data in each band is used for BTEM analysis.

3. Experimental

3.1. Data simulation

The simulated GC–MS data was  used for validation of the
method. In the simulation, the GC curves of four components are
generated by the Gaussian equation and the mass spectra of the
four components are chosen from National Institute of Standards
and Technology (NIST) MS  database. The simulated total ion chro-
matograms (TIC) and the mass spectra of the four components are
shown in Figs. 1(a) and 2(a), respectively. To show the similarity of
the mass spectra, the match ratios are calculated. The match ratios
between component 1 and the others are 654‰,  408‰ and 108‰,
respectively, between component 2 and components 3 and 4 are
290‰ and 156‰,  respectively, and between components 3 and 4
are 161‰.

The GC–MS data were obtained by multiplying the chro-
matograms and mass spectra. Then, random noise in 5% of
maximum signal value was added in the simulated signals.

3.2. GC–MS measurements

The 18 organophosphorus pesticide mixture was obtained
by mixing the standards in a solution with a concentration of
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