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a  b  s  t  r  a  c  t

A  procedure  to estimate  mass  transfer  coefficients  in  linear  gradient  elution  chromatography  is pre-
sented  and validated  by  comparison  with  experimental  data.  Mass  transfer  coefficients  are  traditionally
estimated  experimentally  through  the  van Deemter  plot, which  represents  the  HETP as  a function  of  the
fluid  velocity.  Up  to now,  the  HETP  was  obtained  under  isocratic  elution  conditions.  Unfortunately,  iso-
cratic  elution  experiments  are  often  not  suitable  for  large  biomolecules  which  suffer  from  severe  mass
transfer  hindrances.  Yamamoto  et  al. were  the first  to propose  a semi-empirical  equation  to relate  HETPs
measured  from  linear  gradient  elution  experiments  to those  obtained  under  isocratic  conditions  [7].
Based on  his  pioneering  work,  the  approach  presented  in  this  work  aims  at providing  an  experimental
procedure  supported  by  simple  equations  to estimate  reliable  mass  transfer  parameters  from  linear  gra-
dient  elution  chromatographic  experiments.  From  the  resolution  of  the transport  model,  we  derived  a
rigorous  analytical  expression  for the  HETP  in linear  gradient  elution  chromatography.

© 2014  Elsevier  B.V.  All  rights  reserved.

1. Introduction

The dispersive processes in chromatographic columns are tra-
ditionally characterized by measuring the HETP at different flow
rates. The equation relating the broadness of the chromatograms
to the linear mobile phase velocity is the well-known van Deemter
equation:

HETP = �
A +

�
B

u
+ �

Cu (1)

where
�
A,

�
B and

�
C are related to the Eddy-diffusion, the axial disper-

sion and to the overall mass transfer resistance between the mobile
and stationary phases, respectively [1]. This equation is only valid
for HETPs obtained with linear isotherms and under isocratic con-
ditions. Unfortunately isocratic elution chromatography is often
not convenient for large macromolecules which suffer from severe
steric hindrance and whose elution profiles tend to flatten out,
thus affecting the detectability and the precision of the measure-
ments [2]. Instead, gradient elution is a very convenient method,
well adapted to bio-macromolecules resulting in sharper peaks.
Extensive work was developed by Yamamoto et al. to estimate
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equilibrium isotherm parameters [3,4] and mass transfer
coefficients [5–7] from linear gradient elution (LGE) experiments.

To relate the HETP in LGE to the one obtained under isocratic
conditions, Yamamoto introduced the so-called compression factor
defined by:

Cf = �LGE

�iso(cR
M)

(2)

where �LGE and �iso are the standard deviations of the
chromatograms measured under LGE and isocratic conditions,
respectively. To be comparable to the LGE experiment, the isocratic
elution is performed at cR

M = cM(L, tR), which is the modifier con-
centration measured at the end of the column (z = L) when the solute
of interest is eluting (at time tR) while applying a linear gradient.
Knowing the HETP in LGE and the compression factor, the HETP in
isocratic elution is obtained from the following equation:

HETPiso = HETPLGE

(
tR

tiso
R

)2
1

C2
f

(3)

where tR is the solute retention time from LGE while tiso
R is the corre-

sponding retention time from isocratic elution. For the compression
factor Yamamoto et al. derived a semi-empirical expression [5,8]:
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The parameters used in the definition of � are defined in the next
section.

In this work, we propose an analytical expression of the HETP in
LGE based on the analytical resolution of the transport model.  This
classical model for chromatography has been solved analytically
in the Laplace space for LGE and an expression of the HETP was
derived by calculating the moments of the thus obtained solution.

2. Theory

2.1. Transport model

At low solute concentration, the equilibrium concentration of
solute retained in the stationary phase (q*) is linearly related to the
solute concentration in solution (c) by a linear isotherm defined as
follows:

q∗ = Hc (5)

where H is known as the Henry coefficient. It is related to the reten-
tion factor by K = vH,  where v = 1 − ε/ε is the phase ratio defined
with respect to the bed porosity ε. In the frame of the stoichiomet-
ric displacement model (SD) [9,10] the retention factor is related to
the modifier concentration (often a salt as NaCl in ion exchange
chromatography) by a power function:

K = K∞ + ˛c−ˇ
M (6)

where K∞ = εp� is the retention factor at infinite modifier concen-
tration, and  ̨ and  ̌ are the two parameters used to relate the
retention factor to the modifier concentration. cm(z,t) (written cM

for short) is the modifier concentration at time t and position z along
the column.

The intra-particle porosity, εp, represents the volume frac-
tion of the porous particles accessible to the solute. For large
macromolecules, εp is defined in terms of accessible porosity: εp,i.
Therefore, εp,i is ranging from εp obtained for small non-excluded
tracers which can access all the pores without restrictions, to 0
for completely excluded molecules. In terms of retention factor
at infinite modifier concentration, it comes K∞,i = εp,i�. The total,
and total accessible porosities are defined by εt = ε(1 + K∞) and
εt,i = ε(1 + K∞,i), respectively. The porosity distributions of the resin
under consideration are given in our previous article [11].

Among the different chromatographic models available in the
literature [2,12], the transport model [13,14] offers a good approx-
imation of the dissipative mechanisms by lumping together all
the mass transfer resistances in a single overall parameter km. In
the frame of the transport model,  the chromatographic column is
modeled as an ideal plug flow (negligible axial dispersion). This
assumption is valid when the mass transfer resistance is dominated
by the diffusion of the macromolecules in the porous particles. The
mass balance equation for a given solute (or modifier) is written as
follows:

u
∂c

∂z
+ ε

∂c

∂t
+ (1 − ε)

∂q

∂t
= 0 (7)

where u is the linear velocity. In the frame of the linear driving force
approximation (LDF), the equation describing the kinetic transport
in the pores is described as follows:

∂q

∂t
= km(q∗ − q) (8)

where q* is defined by the equilibrium isotherm given in Eq. (5). The
boundary and initial conditions are c(z,0) = q(z,0) = 0 for 0 ≤ z ≤ L and
c(0,t) = m0ı(t) where m0 is the initial amount injected and ı(t) is the
Dirac function.

As shown in our previous article [11], under the assumption that
the modifier is not excluded and not interacting with the ligands

and that the transport into to pore is infinitely fast (large km), for lin-
ear gradients, the concentration of modifier at the position z along
the column as a function of time and gradient slope is described by
the following equation:

cM(z, t) = c0
M + g

(
t − εtz

u

)
, t ≥ εtz

u
, 0 ≤ z ≤ L (9)

where c0
M in mM is the initial modifier concentration, and g the

gradient slope in mM/min. The modifier retention time is given by
t0,M = εtL/u = t0(1 + K∞), where t0 = εL/u.

The analytical resolution of Eqs. (7) and (8) under isocratic
condition has been early proposed by Thomas [15], who smartly
introduced the coordinates transformation x → zεt/u and y → (t −
zεt/u)/v.

From Eqs. (6) and (9), it is clear that K is a function of y exclu-
sively. In addition, km is known to be a function of the retention
factor K, and therefore we assume that km is also a function of y
exclusively and does not depend on x. Introducing Eq. (5) in (8)
and applying the above-mentioned variable change leads to the
following system of equations:

∂c

∂x
+ ∂q

∂y
= 0 (10)

∂q

∂y
= km(y)[K(y)c − �q] (11)

The initial and boundary conditions in the new coordinate
system become c(x,0) = q(x,0) = 0 for 0 ≤ x ≤ Lεt/u and c(0,  y) =
m0ı(y)/v, for 0 ≤ y.

The differentiation of Eq. (11) with respect to the coordinate x,
and the substitution of the variable c with Eq. (10), leads to the
following equation:

∂2
q

∂x∂y
= −km(y)

[
K(y)

∂q

∂y
+ �

∂q

∂x

]
(12)

Eq. (12) has an analytical solution in the Laplace space after tak-
ing the Laplace transform with respect to the x coordinate [16]. This
solution has been proposed by Hao et al. for impulse injection for
y ≥ 0 [17]:

q̂(s, y) = m0km(0)K(0)
�(s + km(0)K(0))

exp

(
−
∫ y

0

�km(w)s
s + km(w)k(w)

dw

)
(13)

And for the solute concentration in the mobile phase:

ĉ(s, y) = m0km(0)K(0)
(s + km(0)K(0))

km(y)
(s + km(y)K(y))

× exp

(
−
∫ y

0

�km(w)s
s + km(w)K(w)

dw

)
(14)

2.2. HETP

Under isocratic elution conditions, the inverse Laplace trans-
form can be obtained analytically and the corresponding expression
of c(z,t) corresponds to the very well-known Gaussian profile
derived originally by van Deemter et al. [1]. For LGE, the inverse
Laplace transform cannot be derived analytically, however we can
use moment analysis to derive the first and second order moments
of the chromatogram which are sufficient to compute the HETP. The
first and the second order central moments of the mobile phase con-
centration c(x,y) in the (x,y) coordinate system with respect to the
x variable are obtained from the analytical solution in the Laplace
space according to following equation [17]:

�i = (−1)ilim
s→0

∂i ln(ĉ(s, y))
∂si

, i = 1, 2 (15)
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