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a b s t r a c t 

In the Moving Particle Semi-implicit method (MPS), the original Laplacian model is introduced from a 

transient diffusion problem and a parameter is required to eliminate the error. Another Laplacian model 

is developed to mainly enhance the pressure calculation. When using an equation of state instead of 

the Poisson pressure equation to calculate pressure as weakly-compressible MPS (WC-MPS), the pressure 

noise problem is significant. In this study, a new Laplacian model is derived from the divergence of the 

original gradient model in MPS to improve the accuracy in the method. A stabilization technique devel- 

oped from the continuity equation is proposed to enhance the incompressibility and to reduce pressure 

noise. The new Laplacian model is validated by a 2D diffusion problem and the Couette flow. It is able 

to calculate accurate results in the 2D diffusion problem with analytical solution. In the Couette flow, 

the accuracy of three models is compared and investigated with consideration of the interaction radius 

and the weighting function. It shows that the new Laplacian model is able to calculate more accurate 

results in the Couette flow. The weighting function plays an insignificant role in improving the accuracy 

of the new model in the problem. The stabilization technique is validated by a water jet impinging on a 

rigid flat plate. In the validation, effects from the collision model, repulsive force, weighting function, and 

particle distance are investigated. The stabilization technique is able to greatly reduce the pressure noise 

and unphysical pressure fluctuations. With the two techniques, the improved weakly-compressible MPS 

(IWC-MPS) is applied into modeling a dam-breaking flow. Comparisons show that the IWC-MPS attained 

good agreement with experimental measurements. Pressure noise and unphysical fluctuations are greatly 

eliminated. Compared with other numerical methods, IWC-MPS can obtain good results. 

Crown Copyright © 2016 Published by Elsevier Ltd. All rights reserved. 

1. Introduction 

The Moving Particle Semi-implicit method (MPS) and Smoothed 

Particle Hydrodynamics method (SPH) are useful numerical tools 

for studying free-surface flows in various engineering problems [1–

9] . These mesh-free methods can easily simulate complicated fluid 

interface flows since the interface can be identified by tracing par- 

ticles. 

MPS was originally proposed by Koshizuka and Oka [10] for 

modeling viscous incompressible flows. Improvements have been 

made in applying MPS in simulating various types of flows [14–

21] . As a Lagrangian method, continuum mechanics is analyzed in 

the concept of particles, which represent the fluid in MPS. This 

makes spatial differential operators or models calculated in simu- 

lations through summations over particles, which carry flow prop- 

erties such as velocity and pressure. Two principal approaches can 
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address the numerical implementation in obtaining pressure. If the 

Poisson equation is used to calculate the pressure field, the method 

is referred to as fully-incompressible MPS [1,2,10] . If the pressure 

field is obtained from solving an equation of state and incompress- 

ible fluids such as water are assumed to be weakly-compressible, 

the method is referred as Weakly-Compressible MPS (WC-MPS) 

[3,11,12] . Although the weakly-compressible scheme generates nu- 

merical oscillation in the pressure and density fields, it is attractive 

in parallel computing for simulations especially in cases involving 

large number of particles [13] and is considered an important par- 

ticle method. 

In MPS, there are two Laplacian models that have wide applica- 

tions. The original Laplacian model, introduced by Koshizuka and 

Oka [22] was developed from a transient diffusion problem such 

that an extra parameter needs to be incorporated in order to en- 

sure that the increase in variance is equivalent to the diffusion 

problem. However, inaccuracy still exists [23] . Khayyer and Gotoh 

[15] derived another model that was based on the divergence of 

the SPH gradient model. The derived Laplacian model focuses on 

the enhancement and stabilization of the pressure calculation than 
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the accuracy of the viscous term discretization [15,18–20] . In fact, 

using the original gradient model to derive a new Laplacian model 

in MPS is still possible, which maintains consistency of general 

particle arrangement [24] . In this study, a new Laplacian model is 

derived with consideration of the original gradient model in MPS 

[10] . The new model is evaluated with respects to the particle dis- 

tance, interaction radius, and weighting function. Its accuracy is 

compared with previous Laplacian models. 

The particle number density as a normalized factor in MPS is 

proportional to the fluid density. However, it is constant when 

modeling the incompressible fluid flows. The discrepancy of the 

particle number density is generally observed in calculations 

[14,24] . Variation in the particle number density implies density 

discrepancy. Therefore, various types of source terms were devel- 

oped for the Poisson equation in the fully incompressible MPS to 

enhance stability [14,16–18,20,25] . On the other hand, the colli- 

sion model [17,21,25,26,30] and repulsive force model [16,17,22,27–

29] are commonly applied in MPS to solve particle clustering or 

unphysical voids. These techniques may introduce particle penetra- 

tion or random movements of particles if excessive repulsive force 

is produced [28,31] , which makes the density discrepancy problem 

more complicated. In WC-MPS, the problem of density discrep- 

ancy is more significant since the incompressible fluid is treated 

as weakly compressible. To reduce the density discrepancy, a sta- 

bilization technique is developed to maintain the incompressibil- 

ity of the incompressible fluid. By applying the newly developed 

technique, the density discrepancy could be rectified and particle 

penetration is minimized. Therefore, this technique is beneficial to 

WC-MPS in the stabilization of simulations. 

The paper is organized as follows: in Section 2 , WC-MPS for- 

mulation is presented; a new Laplacian model is developed and 

validated by a 2D diffusion problem and the Couette flow in 

Section 3 ; a stabilization technique is proposed and evaluated by 

a water jet impinging on a rigid plate with the consideration 

of the parameters such as the collision distance, repulsive force 

models, weighting function, and particle distance in Section 4 ; 

and Section 5 presents the application of the improved WC-MPS 

(IWC-MPS) including the new Laplacian model and the stabiliza- 

tion technique to simulate the dam-breaking flow and comparisons 

are made with experimental measurements to various numerical 

methods. 

2. WC-MPS formulation 

2.1. Governing equations 

The governing equations for incompressible Newtonian fluids in 

the Lagrangian framework are: 

1 

ρ

D ρ

D t 
+ ∇ · u = 0 

D u 

D t 
= − 1 

ρ
∇ p + υ∇ 

2 u + F (1) 

where ρ is the density, u is the velocity vector, t the time, p the 

pressure, υ the kinematic viscosity, and F is an external force (i.e., 

gravity). All vector quantities are written in bold and gradient op- 

erator is illustrated in “∇”. 

The predictor-corrector time-stepping scheme is adopted to 

solve the governing equations [10,30,32] . In the predictor, the vis- 

cosity and force terms are solved to obtain intermediate velocity 

u 

∗ and intermediate particle position r ∗. In the corrector step, the 

pressure term is calculated to obtain the new velocity, and particle 

locations are updated by moving particles with the new velocity. 

2.2. Weighting function 

In MPS, the fluid and boundary domain is represented by a set 

of discretized particles. In the calculation, each fluid particle in 

the domain only interacts with neighboring particles in its inter- 

action circle. This interaction circle is determined by a weighting 

function, also used to determine the contribution of each neigh- 

boring particle to the target particle. Neighboring particles located 

closer to the target particle have greater contribution than par- 

ticles located farther away. There are two widely-used weighting 

functions in MPS applications WF1 [1,22,15,16] Eq. (2) and WF2 

[3,11,12,30,32] Eq. (3) , expressed as: 

WF1 : W i j = W 

(
r i j , r e 

)
= 

{
r e 
r i j 

− 1 r i j ≤ r e 

0 r i j > r e 
(2) 

WF2 : W i j = W ( r i j , r e ) = 

{(
1 − r i j 

r e 

)3 
r i j ≤ r e 

0 r i j > r e 
(3) 

where W ij is the value of a weighting function, i is the target par- 

ticle, j is a neighboring particle, r ij is the distance between the par- 

ticle i and j , and r e is the radius of the interaction circle. 

WF1 has an infinite value at r ij = 0. It means that a neighboring 

particle (the j th particle) has a greater contribution to the i th par- 

ticle as the distance between them is decreased, while the value of 

WF2 is equal to 1.0 in the center. The first-order derivative of WF1 

still has an infinite value in the center and it is equal to −3.0/ r e at 

r ij = 0.0 for WF2. 

Particle number density as a normalized factor, which is pro- 

portional to the fluid density [10,14,22] , is calculated as: 

〈 n 〉 i = 

∑ 

j � = i 
W ( r i j , r e ) = 

∑ 

j � = i 
W i j (4) 

For an incompressible fluid, the density is constant, and the 

standard value n 0 calculated from the initial particle distribution 

is used to substitute < n > i in the following models [14,22] . 

2.3. MPS models 

In MPS, the first gradient model, the Laplacian model (viscous 

model) and the divergence model were developed in association 

with the weighting function. The original gradient model was pro- 

posed by Koshizuka and Oka [10] , written as: 

〈 ∇φ〉 i = 

D s 

n 0 

∑ 

j � = i 

φ j − φi 

r 2 
i j 

r i j W i j (5) 

where D s is the coefficient for dimension of space, r ij = r j − r i is 

the position vector, r ij = | r ij | and φ is a general scalar. 

In MPS, when the first gradient model is used for the pressure 

gradient [22] , it is modified as: 

PGM1 : 〈 ∇p 〉 i = 

D s 

n 0 

∑ 

j � = i 

p j − p i, min 

r 2 
i j 

r i j W i j 

= 

D s 

n 0 

∑ 

j � = i 

(
p j − p i 

r 2 
i j 

r i j W i j + 

p i − p i, min 

r 2 
i j 

r i j W i j 

)
(6) 

where p i,min = min 

j⊂J 
( p i , p j ) J = { j : W i j � = 0 } . 

This pressure gradient model is abbreviated as PGM1. PGM1 in- 

troduces an artificial repulsive force term (the second term on the 

right hand side of Eq. (6 ) for stabilization). 

To achieve more repulsive force and the momentum conserva- 

tion, two other pressure gradient models are respectively proposed 

by Khayyer and Gotoh [29] and Toyota et al. [27] : 
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