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a b s t r a c t 

Improper mass conservation and spurious pressure fluctuations are considered as two serious limitations 

of the immersed boundary method (IBM) for modeling flow over moving/deformable bodies. Earlier at- 

tempts to overcome these issues were usually mathematically involved and computationally expensive. 

In one of our recent work (Kumar M, Roy S, Ali MS. An efficient immersed boundary algorithm for sim- 

ulation of flows in curved and moving geometries. Comput Fluids 2016; 129: 159–178.), a simple and 

robust methodology is demonstrated for the sharp interface immersed boundary method which imposes 

proper boundary conditions for pressure and velocity in the cells intercepted by the solid boundary. In 

the present paper the mass conservation and pressure fluctuations of the proposed scheme are investi- 

gated in detail and the results are presented. The proposed methodology is shown not to add any com- 

putational overhead for both fixed and moving boundary problems. An overall second order accuracy is 

maintained in the discretization and the interpolation schemes. Validation and verification studies have 

been presented. The achieved results show a second order accurate mass conservation and also exhibit 

smooth behavior of pressure near the moving surfaces. Species concentration equation is solved to quan- 

tify the accuracy in mixing calculations. The present IBM scheme is also used to predict the terminal 

velocity of objects falling in a quiescent fluid medium under the actions of gravity. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

Immersed boundary method (IBM) was first introduced by Pe- 

skin [2] while simulating cardiovascular flows with deformable 

heart walls. He attributed the superiority of this method over 

the body-fitted mesh approaches to the fact that IBM does not 

essentially need the gridlines to conform to the geometry of 

the flow boundary. In IBM, a rectilinear grid is deployed to dis- 

cretize the flow domain; while the replication of the bound- 

ary condition is achieved through incorporating appropriate forc- 

ing terms in the governing equations. Here, the boundary is as- 

sumed to be immersed in the flow domain and is represented us- 

ing Lagrangian descriptions. This indirect way of considering ge- 

ometries/boundaries helps in avoiding the complexities related to 

body-fitted approaches for complex, moving and deforming bodies. 

Especially, the costly dynamic meshing or mesh deformation and 

solution interpolation steps are avoided as a fixed Cartesian mesh 

is utilized throughout the simulation. It also helps in achieving bet- 

ter computational efficiency as load balancing and domain decom- 
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position for parallel processes become much simpler in a Cartesian 

mesh framework [3,4] . 

Implementing the exact boundary conditions is of utmost im- 

portance in IBM. Different IBM implementations have discussed 

strategies for that. In general, the boundary effects are mimicked 

by adding appropriate source terms in the governing equations. 

This can be implemented via continuous forcing approach (CFA) 

or discrete forcing approach (DFA). In CFA, the forcing function 

spreads over a band of cells in the vicinity of the actual boundary 

[2,5,6] . Smooth distributive functions are generally used for this 

purpose [7] . Peskin [2] used constitutive laws for spring-mass type 

of systems to obtain the force exerted by the elastic solid boundary 

on the fluid domain and thus incorporated the effects of boundary 

deformation. He used a Dirac-delta function for distributing this 

force over next two grid points on both sides of the boundary. For 

rigid bodies, Goldstein et al. [8] used a feedback-forcing mecha- 

nism to determine forcing function near the boundary. In CFA, this 

forcing function is incorporated in the governing differential equa- 

tions before obtaining their discretized form. In CFA, the velocity 

boundary condition is not satisfied exactly at the interface rather 

it is satisfied over a distributed region near the boundary. One of 

the major drawbacks of this approach is its inability to maintain 

the sharpness of the interfaces as the boundary forces are diffused 
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over the adjacent cells. So, determination of the local field vari- 

ables is difficult in CFA. Moreover, as the forcing term is distributed 

at both sides of the solid wall, it becomes necessary to solve the 

equations in the fictitious domain inside the body, which leads to 

an increased computational overhead in this approach. The com- 

putational overheads further increase at higher Reynolds numbers 

due to the requirement of setting finer grids near boundary. DFA 

was introduced by Mohd-Yusof [9] and was later explored by Verz- 

ico et al. [10] and others. In this approach the forcing function is 

later added to the discretized set of equations. Smoother functions 

are used instead of Dirac delta functions. DFA also avoid user speci- 

fied parameters for the forcing function and the associated stability 

issues. This formulation can be identified as an indirect boundary 

condition implementation as the forces are calculated by substi- 

tuting the variables with boundary values in the discretized set of 

equations. Although DFA helps in achieving better results in case of 

low and moderate Reynolds numbers [11,12] , it fails to achieve ac- 

ceptable results in high Reynolds number cases due to the smooth 

distributive nature of the forcing function. This can be attributed to 

the fact that at higher Reynolds number regime, the local accuracy 

is of much importance within boundary layer without smearing its 

profile. To solve this issue, DFA is further modified to direct bound- 

ary implementation techniques and termed as sharp interface im- 

mersed boundary method. In most of the approaches of this class 

(excluding cut-cell methodology), polynomial velocity interpolation 

functions are used to impose the boundary conditions directly at 

the fluid cells which have been intercepted by the physical bound- 

ary. This is also known as solution reconstruction scheme (SRS). 

Approaches in sharp interface immersed boundary method can be 

classified as: (i) Cut-cell (or Cartesian) method, and (ii). Ghost Cell 

Immersed boundary method (GCIBM). Cut-cell method has similar- 

ity with boundary conforming approach, as the fluid-parts of the 

intercepted cells are re-structured to form a new cell. This restruc- 

turing allows having irregular-shaped cells that match well with 

the topology of the boundary. This was first introduced by Clarke 

et al. [13] for inviscid flow and later extended by Udaykumar et 

al. [14–16] and Ye et al. [17] to viscous flow calculations. Calcu- 

lation of the pressure gradient and flux quantities through the ir- 

regular cells is a challenging task in this approach. Slow conver- 

gence rate due presence of the small cells is also one of the main 

limitations of this method [18] . In GCIBM, boundary conditions at 

the intercepted cells are enforced by extrapolating the field vari- 

ables at the ghost nodes (nodes which are inside the solid body 

but have at least one neighboring node in the fluid domain) [19–

22] . GCIBM is extended to a new variant called hybrid Cartesian 

immersed boundary method (HCIBM) [23,24] . The word ‘hybrid’ 

can be attributed to the fact that this method is conceptually in- 

spired by Immersed interface method (IIM) [25–27] and Cartesian 

method. However this method does not incorporate discrete forc- 

ing terms into the momentum equations (like IIM) or merge the 

intercepted cell with fluid cells (like Cut cell method). Here, the so- 

lution at the immersed cell is reconstructed using known boundary 

conditions and local field variables. Overall, DFA is easy to imple- 

ment and can well-resolve the sharp interfaces at the intersection 

of fluid and solid without smearing the boundary effects over the 

adjacent cells. DFA has also been demonstrated to show good ac- 

curacy and stability over a large family of problems [7] . 

Although good agreements with available experimental, analyt- 

ical or numerical (body fitted approach) data were reported us- 

ing these various IBM schemes, some of the critical issues are 

still not well addressed [18] . Mass conservation and spurious pres- 

sure fluctuations near the boundary deserve a very special atten- 

tion especially for flows involving boundary movements. These is- 

sues are observed in all variants of discretely forced (DFA) im- 

mersed boundary method [18,28,29] and they restrict applicabil- 

ity of IBM at wider ranges of problems involving fluid structure 

interaction (FSI), mixing and heat transfer calculations. Mass loss 

at the immersed cell is accounted due to the violation of geomet- 

ric conservation law [30] at that cell . Hou and Shi [31] noted that 

area loss is as large as 23% in the immersed cells. A large num- 

ber of numerical techniques for incompressible flow simulations 

are based on pressure correction methods to obtain a divergence- 

free velocity field. Therefore, the violation of local mass conserva- 

tion at the intercepted cell can lead to spurious pressure fluctu- 

ations near the boundary [18] . These issues are amplified when 

moving or deforming bodies are involved, as the violation of lo- 

cal conservation of mass is augmented by the continuous change 

of status of the nodes near the boundaries from dead nodes to 

fluid and vice versa. Liu and Hu [32] demonstrated the causal- 

ity of spurious pressure fluctuations in great detail. They showed 

that as the moving boundary enters into a fresh Eulerian cell, an 

unphysical calculation of normal velocity derivative is obtained, 

which perturbs the growth of pressure field near boundary. One 

of the solutions for this problem is the use of Cartesian grid (cut- 

cell) method [15,17] or very high density of mesh [33] . Strict ad- 

herence to mass conservation is obeyed in the cut-cell method. 

Although cut-cell method eliminates the issue of improper mass 

conservation and spurious pressure fluctuation, it introduces ma- 

trix stiffness and also involves very high numerical complexities 

in treatment of geometrical irregularities, especially for the 3D 

bodies [15,17,18] . More difficulties arise as the forcing functions 

and interpolation stencils change continuously with changes in the 

cut cell shapes. Whereas, the use of higher grid density suppress 

the pressure fluctuations substantially increase the computational 

load. In the diffused interface method, control over spurious pres- 

sure fluctuation has been achieved by distributing and smooth- 

ing out of forcing terms using smoother delta function but it does 

so without correcting the conservation error [34,35] . In other dis- 

crete forcing techniques, spurious pressure oscillations are more 

prominent due to unavailability of smoothing scheme while re- 

constructing the solution at the immersed cell [35–37] . To ad- 

dress this issue, Muldoon and Acharya [38] constrained the ve- 

locities at the immersed cells so that the continuity equation is 

satisfied. They showed good global mass conservation for flows 

over two-dimensional obstacles. Kang et al. [39] , proposed an im- 

mersed boundary approximation method in which mass conserva- 

tion at the immersed cell was obtained by solving a divergence 

minimization equation and thus forcing the interpolation functions 

to satisfy overall incompressibility. They obtained noise-free wall- 

pressure spectra within turbulent boundary layers. However, their 

methodology was not been tested over moving boundary prob- 

lems. Luo et al. [28] used the idea of reconstruction of interpo- 

lated solution at the immersed cell using another set of equa- 

tions (called hybrid equations) to counter the temporal oscillations. 

Apart from giving a control over the pressure oscillations, it also 

helped in avoiding a lower CFL criteria ( < 0.02) and finer spatial 

resolution but introduced one extra set of equations. Seo and Mit- 

tal [18] proposed a scheme for sharp interface method utilizing the 

concepts of cut-cell method. Their method satisfied mass conserva- 

tion in the immersed cell by considering the mass in/or out due to 

boundary movement. This formulation helped in achieving better 

results in terms of mass conservation, transient pressure fluctua- 

tion and also avoided stiff equations, but there were still complex- 

ities involved (lesser than cut-cell approach) and hence needs in- 

tricate coding logistics. Recently, Liu and Hu [32] used local grid 

refinement, higher time step and modified interpolation schemes 

coupled with dynamic weighted functions to suppress the tempo- 

ral pressure fluctuation. However, it has been observed that most 

of the special treatments for mass conservation and smooth pres- 

sure behavior either reduce the sharpness of the boundary or in- 

volve complexity associated with higher computational and im- 

plementation efforts. This is to mention that the computational 
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