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a b s t r a c t 

We propose a new lattice Boltzmann method (LBM) for two-phase fluid flows with high density ratios 

by improving Inamuro et al.’s method [13] without solving the pressure Poisson equation. In the pro- 

posed method, we use the lattice kinetic scheme (LKS, an extended scheme of LBM) in the same way 

as Inamuro et al.’s method. The velocity and pressure fields are computed by using a single equilibrium 

distribution function and by adjusting the speed of sound in a high density region to satisfy the in- 

compressible continuity equation even for high density ratios. In addition, an improved LKS is used for 

eliminating dissipation errors, and the continuous surface force (CSF) model is used for modeling inter- 

facial tension of thin interfaces accurately. In order to show the validity of the method, we apply the 

method to the simulations of a stationary drop, binary droplet collision, rising bubbles, and the impact of 

a drop on a thin liquid film (a milk crown). In a stationary drop, pressure and density profiles are com- 

puted, and the effect of sound speed on time evolution of the pressure field in the drop is illustrated. The 

stable computations can be performed for high density ratios up to 855. In the simulations of a binary 

droplet collision and rising bubbles, the computed results by the proposed method are compared with 

those by Inamuro et al.’s method in good agreement. Also, the computation time of the proposed method 

is about 50 times faster than that of Inamuro et al.’s method . In the simulation of a milk crown, the time 

evolution of the crown radius is in good agreement with theoretical predictions. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

Two-phase fluid flows appear in many science and engineering 

fields. In particular, two-phase fluid flows with high density ra- 

tios are important in a lot of problems such as the behavior of 

drops and bubbles, surface waves on the ocean, spray injection, 

milk crown formation and so on. Many numerical methods have 

been proposed to simulate the two-phase fluid flows. For instance, 

the volume of fluid (VOF) method [8] , the front tracking method 

[35] , the level set method [22] and the diffuse interface methods 

(e.g. [2] ) have been widely used. However, there are still some 

difficulties in keeping thin interfaces, mass conservation of each 

phase [34] , and time-consuming computation of the Poisson equa- 

tion for pressure. In addition, since the Poisson equation includes 

the coefficient of variable density under the divergence operator, 

careful treatments for solving the pressure equation are required 

especially for two-phase flows with high density ratios. 
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On the other hand, the lattice Boltzmann method (LBM) has 

been developed into an alternative and promising numerical 

scheme for two-phase fluid flows without solving the Poisson 

equation for the pressure (e.g. [1,11,31] ). The LBM has an advan- 

tage over the above-mentioned methods in keeping thin interfaces 

and mass conservation of each phase. Also, because of its simplic- 

ity and computational efficiency as well as high scalability om par- 

allel processing, the LBM has been applied to many simulations 

of two-phase fluid flows. However, usual LBMs for two-phase fluid 

flows (color-gradient models [7] , pseudopotential models [27] , and 

free-energy models [33] ) cause numerical instability in comput- 

ing the pressure for high density ratios (typically larger than 10). 

So far, many pseudopotential multiphase LBMs as well as color- 

gradient multiphase LBMs are proposed (e.g. [5,9] ), but they usu- 

ally have numerical instability for high density ratios, when fluid 

flows are relatively strong. Recently, Lycett-Brown et al. [19] sim- 

ulated binary droplet collisions with the density ratio of approxi- 

mately 120 using a multiphase cascaded LBM. Also, Mazloomi et al. 

[20,21] proposed a thermodynamically consistent LBM for two- 

phase flows using the entropic LBM and simulated binary droplet 

collisions with the density ratio of 110. In general, the simulation 
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of a moving bubble is more unstable than that of liquid flows be- 

cause of the numerical instability caused by the extremely small 

gas density [18] . A key issue of LBM for high density ratios is stable 

computing of the pressure field in incompressible flows including 

thin interfaces between liquid and gas phases. 

In order to overcome the instability of LBM for high density ra- 

tios, several ideas for stable computing of the pressure field have 

been proposed mainly for free-energy models or phase-field mod- 

els. Inamuro et al. [13] proposed a method for simulating two- 

phase fluid flows with high density ratios up to 10 0 0 by solving 

the pressure Poisson equation. Lee and Lin [17] proposed a stable 

but complicated discretization scheme for the pressure and mo- 

mentum evolution equations and simulated two-phase fluid flows 

with a density ratio of 10 0 0. Both of the above approaches work 

well, but there is still some room for improvement in the pressure 

computing. For Inamuro et al.’s method, the pressure calculation 

without the Poisson equation is required, and simpler formulation 

and discretization for the pressure and momentum evolution equa- 

tions are desirable for the method by Lee and Lin. Recently, Wang 

et al. [36,37] proposed a multiphase lattice Boltzmann flux solver 

(MLBFS) for incompressible multiphase flows with high density ra- 

tio. In their solver, the macroscopic flow variables at cell centers 

are computed by the finite volume method as in usual methods, 

and the fluxes at each cell interface are computed by LBM. The 

solver was validated by the simualtions of several benchmark two- 

and three-dimensional flows with density ratio up to 10 0 0 and 

Reynolds number up to 30 0 0. Shao and Shu [26] developed a hy- 

brid phase field multiple relaxation time LBM and simulated two- 

dimensional two-phase flows with the density ratio of 10 0 0, but 

the validations for three-dimensional two-phase flows with high 

density ratios are still required. 

In the present paper, we propose a new simple LBM for two- 

phase fluid flows with high density ratios by improving the pres- 

sure computing of Inamuro et al.’s method without solving the 

pressure Poisson equation. In the proposed method, we use the 

lattice kinetic scheme (LKS, an extended LBM) [10] in the same 

way as Inamuro et al.’s method. The velocity and pressure field is 

computed by using a single equilibrium distribution function and 

by adjusting the speed of sound in a high density region. In ad- 

dition, the improved LKS [32] is used for eliminating dissipation 

errors, and the continuous surface force (CSF) model [4] is used 

for modeling interfacial tension of thin interfaces accurately. In or- 

der to show the validity of the method, we apply the method to 

the simulations of a stationary drop, binary droplet collision, ris- 

ing bubbles, and the impact of a drop on a thin liquid film (a milk 

crown). 

The paper is organized as follows. In Section 2 we propose an 

improved lattice Bolzmann method for incompressible two-phase 

flows with large density differences. In Section 3 we present nu- 

merical examples in order to validate the proposed method. Finally, 

concluding remarks are given in Section 4 . 

2. Numerical method 

Hereafter we use non-dimensional variables defined in 

Appendix A . In the same way as Inamuro et al. [13] , we use 

the LKS (an extended scheme of LBM) [10] in which the relaxation 

time is set to unity and the macroscopic variables can be calcu- 

lated without using the particle distribution function. In the LKS, 

a modeled gas, which is composed of identical particles whose 

velocities are restricted to a finite set of vectors, is considered as 

in the LBM. The three-dimensional lattice with fifteen velocity 

vectors (D3Q15 model) are used in the present study. The D3Q15 

model has the velocity vectors c i = (0 , 0 , 0) , (0, 0, ±1), (0, ±1, 0), 

( ±1, 0, 0), ( ± 1, ±1, ±1) for i = 1 , 2 , . . . , 15 . The physical space is 

divided into a cubic lattice. 

2.1. LKS for order parameter 

The algorithm of computing the order parameter φ is the same 

as [13] . The time evolution of the order parameter φ( x , t ) at the 

lattice point x and time t is computed by the following equations: 

φ(x , t + �t) = 

15 ∑ 

i =1 

f eq 
i 

(x − c i �x, t) , (1) 

where �x is a lattice spacing, �t is the time step during which the 

particles travel one lattice spacing, and f 
eq 
i 

is an equilibrium distri- 

bution function. It is noted that �t = Sh �x = O [(�x ) 2 ] where Sh = 

ˆ U 0 / ̂ c = O (�x ) is the Strouhal number as described in Appendix A . 

The equilibrium distribution function f 
eq 
i 

is given by 

f eq 
i 

= H i φ + F i 

[ 
p 0 − κ f φ∇ 

2 φ − κ f 

6 

| ∇φ| 2 
] 

+ 3 E i φc iαu α

+ E i κ f G αβ (φ) c iαc iβ, (2) 

where u α = O (�x ) is the fluid velocity computed in Section 2.2 , 

E 1 = 2 / 9 , E 2 = E 3 = E 4 = · · · = E 7 = 1 / 9 , 

E 8 = E 9 = E 10 = · · · = E 15 = 1 / 72 , 

H 1 = 1 , H 2 = H 3 = H 4 = · · · = H 15 = 0 , 

F 1 = −7 / 3 , F i = 3 E i ( i = 2 , 3 , 4 , · · · , 15 ) , (3) 

and 

G αβ (φ) = 

9 

2 

∂φ

∂x α

∂φ

∂x β
− 3 

2 

∂φ

∂x γ

∂φ

∂x γ
δαβ, (4) 

with α, β, γ = x, y, z (subscripts α, β , and γ represent Cartesian 

coordinates and the summation convention is used). In the above 

equations, δαβ is the Kronecker delta and κ f is a constant parame- 

ter of O [( �x ) 2 ] determining the width of the interface. 

In Eq. (2) , p 0 is given by 

p 0 = φT 
1 

1 − bφ
− aφ2 , (5) 

where a, b , and T are free parameters determining the theoreti- 

cal maximum and the minimum of the order parameter φth 
max and 

φth 
min 

. In a stationary flow field with a straight interface, the two 

phases correspond to φth 
max and φth 

min 
, and the order parameter φ

in the interface varies in the range of φth 
min 

< φ < φth 
max . However, 

it is noted that in a dynamic flow field with a curved interface, the 

profile of φ around the interface changes a little with time from 

the stationary one. 

The following finite-difference approximations are used to cal- 

culate the derivatives in Eqs. (2) and (4) : 

∂ψ 

∂x α
≈ 1 

10�x 

15 ∑ 

i =1 

c iαψ(x + c i �x ) , (6) 

∇ 

2 ψ ≈ 1 

5(�x ) 2 

[ 

15 ∑ 

i =2 

ψ(x + c i �x ) − 14 ψ(x ) 

] 

. (7) 

Note that the equations for the order parameter φ are the same as 

the free-energy model by Swift et al. [33] . 

The density in the interface is obtained by using the order pa- 

rameter φ with the following relation: 

ρ = 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

ρG , φ = φmin , 

�ρ

2 

[
sin 

(
φ − φ

�φ
π

)
+ 1 

]
+ ρG , φmin < φ < φmax , 

ρL , φ = φmax , 

(8) 

where ρG and ρL are the densities of gas and liquid phases, 

and φmax and φmin are the maximum and the minimum of φ in 
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