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a b s t r a c t 

Based on the double shockwave approximation procedure, a local Riemann solver for strongly nonlinear 

equations of state (EOS) such as the Jones–Wilkins–Lee (JWL) EOS is presented, which has suppressed 

successfully numerical oscillation caused by high-density ratio and high-pressure ratio across the inter- 

face between explosion products and air. The real ghost fluid method (RGFM) and the level set method 

have been used for converting multi-medium flows into pure flows and for implicitly tracking the inter- 

face, respectively. A fifth order finite difference weighted essentially non-oscillatory (WENO) scheme and 

a third order TVD Runge–Kutta method are utilized for the spatial discretization and the time advance, 

respectively. An enclosed-type MPI-based parallel methodology for the RGFM procedure on a uniform 

structured mesh is presented to realize the parallelization of three-dimensional (3D) air explosion. The 

overall process of 3D air explosion of both TNT and aluminized explosives has been successfully simu- 

lated. The overpressures at different locations of 3D air explosion for both explosives mentioned above 

are monitored and analyzed for revealing the influence of aluminum powder combustion on the over- 

pressure of the explosion wave. Numerical results indicate that, due to aluminum powder afterburning, 

the attenuation of the explosion wave formed by aluminized explosives is slower than that caused by 

TNT. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

Air explosion is a typical multi-medium problem, in which the 

explosion flow field usually consists of many media such as det- 

onation products and air. It is obvious that the sharp medium in- 

terface with high-density ratio and high-pressure ratio separates 

detonation products from air. In the numerical simulation of air 

explosion, because of the abrupt change of density and pressure 

close to the interface, unphysical numerical oscillation may easily 

appear in the neighborhood of the interface. Meanwhile, with the 

continuous upgrade of explosives, density ratio and pressure ratio 

increase constantly and significantly. Therefore, tracking and treat- 

ing the strong nonlinear discontinuous interface in air explosion 

have received considerable attention. 

Many interface tracking techniques have been discussed over 

the past few decades. The marker-and-cell (MAC) method pro- 

posed by Harlow and Welch [1] has often been used to track inter- 

face movement and flow field evolution. However, the maintenance 

of a sharp interface among multi-medium is difficult. Hirt and 
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Nichols [2] presented another interface tracking algorithm known 

as volume-of-fluid (VOF) method without tracking the motion of 

the multi-medium interface, in which, as time increases, the vol- 

ume of each medium in each cell is changing continuously and the 

new interface is reconstructed from the volume at the current time 

level. The main drawback of the VOF method is that, for deciding 

the normal direction of the multi-medium interface, a cluster of 

eight neighboring cells for the two dimensional case must be taken 

into consideration [3] . To overcome such drawbacks of the VOF 

method, the moment of fluid (MOF) method introduced by Ahn 

and Shashkov [4] and by Dyadechko and Shashkov [5] with sec- 

ond order accuracy employed not only volume fractions but also 

the position of the centroid, which allows the MOF method to uti- 

lize the cell where reconstruction is performed. The well-known 

particle-in-cell (PIC) algorithm by Amsden [6] is a Lagrangian de- 

scription of the flows in which particles are explicitly associated 

with different medium and thus the interface can be tracked eas- 

ily. The principal drawbacks are a large numerical diffusion and 

a numerical noise, due to the momentum transfer between grids 

and particles and the employment of finite particle numbers. The 

level set method developed by Osher and Sethian [7] is a simple 

and versatile method for tracking the evolution of a locomotive 
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interface. We would like to mention in particular the work of Va- 

hab and Miller [8] , which provided a second order front-tracking 

method by combining the Godunov algorithm with the level-set 

method, in which global conservation was realized. The level-set 

method [9–11] generally uses a Hamilton–Jacobi equation to de- 

scribe the moving interface, which is tracked as the zero level set 

of a continuous function mimicking the signed distance function 

instead of an explicit function at the new time level. Thus, cases 

with complex interfaces, such as crisscross, torsion and separation, 

etc., can be easily handled by the level-set method. 

Fedkiw et al. [12] presented the original ghost fluid method 

(OGFM), which can address excellently the interaction between a 

weak shock wave and an interface. To further improve the ac- 

curacy of the OGFM method, Liu et al. [13] discussed the modi- 

fied ghost fluid method (MGFM) procedure, which performed bet- 

ter than OGFM due to a local Riemann solver, where the status 

of the ghost fluid across the interface for each phase was defined 

by predicted interfacial status. The accuracy of MGFM for gas-gas 

Riemann problem performed by Liu et al. in [14] shows that, com- 

pared with the exact solution of a Riemann problem, the MGFM 

solution could reach second order accuracy near multi-medium in- 

terface. The key point of the real ghost fluid method (RGFM) proce- 

dure, presented by Wang et al. [15] was that, according to the sta- 

tus of the medium across the interface, a local Riemann problem 

was constructed at first and interfacial status obtained was then 

used to redefine flow status for not only the real fluid grid points 

close to the interface but also the ghost fluid grid points, by which 

smaller error was introduced in the RGFM procedure in compar- 

ison to the MGFM procedure. We remark that the RGFM method 

we adopt in this paper does have conservation errors, like other 

ghost fluid type methods, but it seems to have smaller conserva- 

tion errors than OGFM or MGFM in numerical simulation. We refer 

the readers to [15] for a more detailed discussion on this issue. 

Since OGFM, MGFM and RGFM were introduced, an increas- 

ing number of numerical simulations combining these methods for 

multi-medium flows can be found in the literature. However, most 

of the previous simulations with GFM-based procedures used sim- 

ple and linear equation of state (EOS) for describing multi-medium 

flows such as explosion products and air in air explosion, while the 

complex EOS such as the Jones-Wilkins-Lee (JWL) EOS have sel- 

domly been used. Meanwhile, numerical simulations based on the 

RGFM procedure splitting a multi-medium problem into pure flows 

usually require large parallel computer resources. In general, serial 

computation cannot meet the requirements of multi-dimensional 

large-scale engineering applications. 

In this paper, based on a double shockwave approximation pro- 

cedure, we first present in detail a technique to construct and 

solve the local Riemann problem with the complex EOS such 

as JWL used in air explosion. Our numerical simulation demon- 

strates that this technique effectively eliminates unphysical oscilla- 

tion which often occurs at the multi-medium interface in explosion 

flow fields. Combining the RGFM method, formally transforming 

multi-medium flow into pure flows with an enclosed-type paral- 

lelization module, the mechanisms of 3D air explosion are studied 

by using a fifth order finite difference WENO scheme on a uniform 

structured mesh. 

2. Governing equations 

The governing equations in a conservative form without consid- 

ering the viscous and thermal diffusion effects for describing a 3D 

air explosion can be written as 

∂U 

∂t 
+ 

∂F (U) 

∂x 
+ 

∂G (U) 

∂y 
+ 

∂H(U) 

∂z 
= 0 

U = (ρ, ρu, ρv , ρw, ρE) T 

Table 1 

JWL EOS parameters for explosion products of TNT charge. 

ρ0 (kg/m 

3 ) A (MPa) B (MPa) R 1 R 2 ω 

1630 .0 373800 .0 3747 .0 4 .15 0 .9 0 .35 

F (U) = (ρu, ρu 

2 + p, ρu v , ρuw, (ρE + p) u ) T 

G (U) = (ρv , ρu v , ρv 2 + p, ρv w, (ρE + p) v ) T 

H(U) = (ρw, ρuw, ρv w, ρw 

2 + p, (ρE + p) w ) T (1) 

where ρ and p denote the density and pressure, respectively. u, 

v and w are velocity components in the x, y and z directions in 

Eulerian coordinates, and the total energy E , generally consisting 

of internal energy and kinetic energy, is given as 

E = 

u 

2 + v 2 + w 

2 

2 

+ e (2) 

where e is the internal energy per unit mass. 

For aluminized explosives, the Miller model [16] describing the 

combustion and heat release process of aluminum powder can be 

used to describe the reaction process. By coupling the above 3D 

Euler equations with the Miller model, the whole process of air 

explosion for aluminized explosives can be captured numerically. 

The Miller model given in [16] is 

dλ

dt 
= 

1 

4 

(1 − λ) 
1 
2 p 

1 
6 (3) 

where dλ
dt 

is the material derivative and λ is the chemical reac- 

tion process variable characterizing the aluminum powder reaction 

degree. The reaction process parameters λ = 0 and λ = 1 are de- 

fined as the initially unreacted and completely burned states, re- 

spectively. The material derivative in (3) is first converted to Eu- 

lerian derivatives and then (3) is solved together with the govern- 

ing Eq. (1) using the WENO scheme described below. To close the 

above governing equations, the respective EOS for air and explo- 

sion products should be introduced. The ideal gaseous EOS for air 

can be presented as 

p = (γ − 1) ρe (4) 

where γ = 1 . 4 is a gaseous constant. 

Assuming no heat loss to the surroundings, the expansion of 

explosion products of TNT charge is usually described by the JWL 

EOS [17] , which can be expressed in the following form 

p = A 

(
1 − ωρ

R 1 ρ0 

)
e −

R 1 ρ0 
ρ + B 

(
1 − ωρ

R 2 ρ0 

)
e −

R 2 ρ0 
ρ + ωρe (5) 

where the parameters A, B, R 1 , R 2 , ω and ρ0 are material constants 

of detonation products, which are shown in Table 1 . 

The EOS of detonation products of aluminized explosives should 

be able to establish the essential relationship among pressure, den- 

sity, internal energy and the reaction process variable. The JWL- 

Miller EOS [16] for describing detonation products of aluminized 

explosives are adopted as 

p = A 

(
1 − ωρ

R 1 ρ0 

)
e −

R 1 ρ0 
ρ + B 

(
1 − ωρ

R 2 ρ0 

)
e −

R 2 ρ0 
ρ + 

ωρ( ̃  E + λQ ) 

ρ0 

(6) 

where ˜ E denotes the energy content of aluminized explosives for 

keeping the so-called CJ condition, which denotes a relationship 

between the propagating velocity of the detonation wave and the 

local speed of sound. The constant Q is defined as afterburning en- 

ergy release after the CJ plane located at the end of the reaction 

zone. A, B, R 1 , R 2 , ω and ρ0 in the above Eq. (6) are material con- 

stants of detonation products, which can be found in Table 2 . 
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