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a b s t r a c t

Uncertainty quantification (UQ) for CFD-based ship design can require a large number of simulations, result-

ing in significant overall computational cost. Presently, we use an existing method, multi-fidelity Kriging, to

reduce the number of simulations required for the UQ analysis of the performance of a sailing yacht hull,

considering uncertainties in the tank blockage, mass and centre of gravity. We compare the UQ results with

experimental values.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Initial error analysis for marine applications focused on grid con-

vergence and time discretisation errors [33,34,40]. Recently, as a re-

sult of these efforts (i.e. the reduction of discretisation errors) and

due to a rapid increase of computer power, the focus of uncertainty

analysis has been shifting from grid convergence and time discretisa-

tion errors towards stochastic uncertainty quantification (UQ) [6,33].

The main challenge, especially when considering multiple uncertain

input parameters, is to decrease the number of simulations required

to arrive at accurate UQ results [29,30,38]. A promising approach to

this challenge are non-intrusive multi-fidelity methods, which com-

bine a small number of expensive high-fidelity simulations with a

larger number of less expensive low-fidelity simulations [36]. A re-

cently developed example of such methods is multi-fidelity Kriging

[9,17]. An important asset of multi-fidelity Kriging is that — once the

framework has been set up — it can not only be exploited for UQ, but

also for parameter calibration and shape optimisation [9,16].

An extensive overview of multi-fidelity methods is given in [36],

we provide a brief discussion. In an early application, Haftka [12]

presents a multiplicative multi-fidelity analysis of a clamped beam.

[26] augment results from three-dimensional simulations with re-

sults from two-dimensional simulations, and use polynomial re-

gression to model a scale factor. Kennedy and O’Hagan [17] apply
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multi-fidelity Kriging to simulations of an oil reservoir. Forrester

et al., [9] discuss the issue of sampling plans and apply multi-fidelity

Kriging to shape optimisation of a transonic aircraft wing. Haftka [23]

uses multi-fidelity Kriging to augment wind-tunnel data with CFD re-

sults. de Baar et al., [5] develop a fast way to estimate the hyperpa-

rameters of large data sets, which they incorporate into multi-fidelity

Kriging to augment satellite data with F-16–acquired terrain eleva-

tion data. In a recent paper, Mardia and Marshall [35] present a best

practise for the application of multi-fidelity Kriging and applies it to

the optimisation of a jet engine compressor and a transonic airfoil.

Multi-level Monte Carlo simulations [1] are related to multi-fidelity

Kriging, however the difference correction [1, Eq. 5] acts directly on

the UQ estimator instead of on the surrogate.

Presently, we investigate the free-surface flow around a sailing

yacht hull over a range of velocities. We consider the uncertainties

in the blockage, mass and centre of gravity, and use multi-fidelity

Kriging to propagate these uncertainties to the resulting resistance,

sinkage and pitch. We propose to reduce the cost of the uncertainty

propagation by balancing a small number of high-fidelity fine grid

simulations with a larger number of low-fidelity coarse grid simula-

tions. In this case, we find that we can simplify multi-fidelity Krig-

ing by setting the regression parameter ρ = 1, thus avoiding an addi-

tional hyperparameter estimate. We then validate the UQ results by

comparing them to experimental results.

The purpose of the present work is to investigate and demonstrate

the possibilities of using multi-fidelity Kriging-based UQ to analyse

ship performance. In addition, we briefly demonstrate the flexibility
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of the approach by exploiting the multi-fidelity Kriging response for

parameter calibration.

2. Methodology

2.1. Kriging

Kriging was originally developed as a method for spatial regres-

sion in geology [27] and meteorology [10]. A comprehensive overview

of Kriging can be found in [2], while a detailed investigation of the

origins of Kriging is made in [3]. An excellent introduction to Kriging

in engineering applications is provided in [8]. A lucid derivation of

Kriging in a Bayesian framework can be found in [39].

Along the lines of [39], consider a process with a normally dis-

tributed prior:

X ∼ N (μ, P), (1)

with mean μ, covariance matrix P and a discrete number of process

outputs x — in the present application, the output x is either the re-

sistance, sinkage or pitch. For observations y — in the present appli-

cation, ‘observations’ are CFD simulations — assume a normally dis-

tributed and unbiased likelihood:

Y |x ∼ N (Hx, R), (2)

with observation matrix H and error covariance matrix R. Here H is a

matrix filled with zeros and ones which selects the observations from

the process X. Now, by applying Bayes’ rule:

p(x|y) = p(y|x) p(x)

p(y)
, (3)

the expectation of the process X, conditional on a set of observations

y, is given by the Kriging predictor [39]:

E(X|y) = μ + K(y − μ), (4)

and:

cov(X|y) = (I − KH)P, (5)

with the gain matrix:

K = PHT (R + HPHT )−1. (6)

The Kriging predictor covariance (5) is not used in this paper.

An accurate Kriging prediction depends on the choice of the mean

μ, the covariance matrix P and error covariance matrix R, contained

in the prior and the likelihood, respectively. For P, we choose the fol-

lowing parameterisation:

Pi j = σ 2 exp

(
−

d∑
k=1

|ξ j,k − ξi,k|2

2θ2
k

)
. (7)

Here we have introduced the input parameters ξ, which form a d-

dimensional input ‘parameter space’. The smoothness of the process

is represented by the ‘hyperparameters’ θ, while σ 2 is the variance of

the process. For the error covariance matrix, we choose:

R = ε2I, (8)

with ε small, representing an uncorrelated Gaussian ‘measurement’

uncertainty.

In the ideal case, we would select μ and the hyperparameter(s) θ
in (7) a priori. In most cases, however, we do not have any a priori in-

formation to base this selection on, so we choose the arithmetic mean

of the observations for μ, and tune θ to the observations y instead, us-

ing a maximum likelihood estimate [20,21,24,25]. This is equivalent

to minimising the log-likelihood:

log p(θ|y) ∝ ln|A| + (y − μ)T A−1(y − μ), (9)

with:

A = (R + HPHT ), (10)

where P depends on θ , as given in (7), and where |.| is the determi-

nant. Currently, we use a Nelder–Mead simplex direct search to min-

imise (9), the computational cost of which is relatively small, given

the limited number of observations.

As an example, Fig. 1 shows the process:

x = 3 + cos (5ξ 2) + 1

5
sin (40ξ), (11)

together with 6 samples and the Kriging prediction. In this case, the

number of samples is too small to make a detailed prediction, i.e.

we are under-sampling the process. One solution would be to add

more samples, however, these samples can come at high computa-

tional cost. In the next section, we will see how we can augment the

present data with a set of low-fidelity samples.

2.2. Kriging with multi-fidelity data

Multi-fidelity Kriging is a form of co-Kriging [2, page 138] [4,

pages 234], and was originally developed in geostatistics, for explo-

rations where measurements of different ores are available. A deriva-

tion of multi-fidelity Kriging is given in [9,17]. Here we assume that

we have a set of high-fidelity CFD simulations yHF, which are expen-

sive to evaluate and provide an accurate output, as well as a set of

low-fidelity simulations yLF, which are less expensive to evaluate but

provide only an approximation of the output. The strategy is to aug-

ment a small number of high-fidelity simulations with a larger num-

ber of low-fidelity simulations.

Along the lines of [9,17], let us assume that the high-fidelity pro-

cess XHF is related to the low-fidelity process XLF as:

XHF = ρ XLF + XD, (12)

where ρ is a regression parameter. We now have a new process

XD that represents the difference between the low-fidelity and the

high-fidelity output. This difference process XD will ‘correct’ the low-

fidelity output.

In this particular case, provided that both the low-fidelity and the

high-fidelity simulations are in the asymptotic range of grid conver-

gence, the difference between the low-fidelity and the high-fidelity

output is an effect of the grid error:

yLF = yexact + Chp
LF

+ H.O.T.

yHF = yexact + Chp
HF

+ H.O.T.,

with gridsize h and grid convergence order p, such that:

yHF ≈ yLF − Chp
LF

. (13)

Motivated by the similarity of (12) and (13), at the stage of hyperpa-

rameter estimation we will choose ρ = 1 for the present application,

such that. Given that choice, the difference process xD is effectively a

model of (minus) the grid convergence error Ch
p
LF

of the low-fidelity

simulation.

The key requirement for increasing the accuracy of the predic-

tion, compared to regular Kriging, is that the difference process XD

is smoother — thus has longer correlation ranges — than the low-

fidelity and high-fidelity process. We assume that we satisfy this re-

quirement when the high-fidelity and low-fidelity outputs are highly

correlated.

To predict the multi-fidelity process:

XMF =
(

XLF

XD

)
our approach is to define a multi-fidelity prior covariance matrix PLF

and observation matrix HMF and substitute them in the Kriging pre-

dictor (4–6). Because we are only interested in predicting the high-

fidelity process, not in predicting the difference process, we also in-

troduce a selector matrix Hselect.
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