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a b s t r a c t

Direction-of-arrival (DOA) estimation has attracted a lot of attention on variety of research areas. A lot of
high-resolution DOA estimation algorithms has been proposed, including MUSIC and ESPRIT. Most of
these methods are subspace-based and won not work when the snapshot number is limited. In this paper,
a high-resolution method with single snapshot is proposed basing on compressive sampling theory. The
echoes are sparsely recovered in spatial domain, and high-resolution DOA estimation can be described
with a underdetermined equation solving problem. Three algorithms, including diagonal loading least
squares, ‘1 Regularization, and Orthogonal Matching Pursuit (OMP), are adopt to solve the problem. In
comparison with MUSIC, the novel method have several advantages: Firstly, it can be applied in the single
snapshot scenario. Secondly, it does not estimate source number. Thirdly, it works well when the sources
is coherent. Fourthly, it also works when the sensor number is less than source number. Simulation
results show that compressive sampling methods can estimate the DOA accurately, especially for large
array scenario.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In order to locate the emitting sources, DOA estimation is a ba-
sic and important technique in array signal processing, and has
broad applications in sonar, radar, etc. There are a lot of high-res-
olution DOA estimation algorithms, such as MUSIC, ESPRIT. Most of
these methods are subspace-based, requiring a correlation matrix
which depends on the statistics of array measurement. When the
snapshot number is limited or even only one as the statistics is
not quite accurate, and subspace methods and spatial spectrum
estimation by beamforming degrade dramatically.

The keypoint of most former algorithms for single snapshot
DOA estimation is to reconstruct the correlation matrix and its in-
verse. Literature [1] utilizes the rank-1 correlation matrix R, which
is calculated from one snapshot of array measurement, and the in-
verse matrix is replaced by the pseudo-inverse R� = R/tr (RRH).
However, its resolving capability is not so good.

Compressive sampling (CS), or compressed sensing, makes a lot
of progress in the last decade and impressive performance has
been reported in several applications such as fusion of images, ul-
tra wideband communications [2], and underwater acoustic com-
munications [3].

In this paper, CS is introduce to single snapshot DOA estimation.
First, a novel signal model is proposed by sampling sparsely in the
spatial domain. And then, the CS techniques are adopted to solve
the underdetermined system. The method escapes from estimating

source number and does not need to restrict the sources’ correl-
ativity. Furthermore, it is still effective when the sensor number
is less than the source number.

This paper is organized as follows. Section 2 presents the sparse
sampling based novel model. In Section 3, diagonal loading least
squares, ‘1 Regularization, and Greedy pursuit are introduced to
estimate DOAs. Simulation results are provided to illustrate the
performances comparing with MUSIC algorithm. Finally, the con-
clusions are summarized in Section 5.

2. Signal model by sparse representation

Without loss of generality, we assume a uniform-linear-array
(ULA) of M elements, spaced half of the center wavelength apart.
Consider K far field narrowband waves impinging the array from
different directions. The received array data can be seemed as a
sum of K echoes from multiple paths, with different directions hk:

xðtÞ ¼
XK

k¼1

akskðtÞ þ nðtÞ ð1Þ

where sk(t) is the source signal and ak is the steering vector. n(t) is
additive Gaussian noise and uncorrelated with the source signals.
xðtÞ 2 CM .

Aim to estimate the DOA, a direction response h is considered
as:

hðt; #Þ ¼
XK

k¼1

rkðtÞdð#� hkÞ ¼
rkðtÞ; # ¼ hk

0; else

�
ð2Þ
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where rk(t) denotes the kth signal’s amplitude at t. A parameter set
of # is defined: # 2H = {#1, #2, . . . , #N}. For ULA, H can be set from
�90� to 90� with a step D#, or a pre-estimated direction range. N
is the spatial sampling number. h ¼ ½hð#1Þ; . . . ; hð#NÞ �H. A ¼
½að#1Þ; . . . ; að#NÞ �. h 2 CN , A 2 CM�N . As a result, Eq. (1) can be
represented:

xi ¼ Ahi þ ni; i ¼ 1; . . . ;Nt ð3Þ

xi is the ith snapshot and xi = x(iD t). Dt is the sampling period and
Nt snapshots are observed. X ¼ ½ x1; . . . ; xNt �. X 2 CM�Nt . A direc-
tion response can be estimated from one snapshot, and it should be
a sparse vector containing only few nonzero entries. The Least
Squares solution is gotten from the optimization problem:

min
h
kx� Ahk2 ð4Þ

In practical case, AHA is not invertible, and in hence, the perfor-
mance of LS by A’s Pseudo-inverse is not satisfactory. Several pro-
cedures are introduced to solve the problem in next section.
Furthermore, the procedure is not only constrained in ULA. If the
array is extended to other shapes, such as planar array, 2-D direc-
tion can be estimated with a 2-D grid.

3. Super resolution by compressive sampling

Take into account h’s sparsity, the problem is formulated by the
‘0-norm:

min
h
kx� Ahk2 þ kkhk0 ð5Þ

k > 0, and khk0 counts the number of h’s nonzero components. The
other form of ‘0-norm minimization is K-sparse approximation

min
h
kx� Ahk2

; s:t: khk0 6 K ð6Þ

It’s NP-hard combinatory optimization problem and the non-
zero components are constrained below a certain value K. Two cat-
egories of sub-optimal strategies have been adopted to
approximately solve the problem, relaxation of the cost function,
and greedy pursuit strategies or non-convex local optimization.

3.1. Relaxation of the cost function

The regularization techniques are operated to relax the cost
function by replacing ‘0-norm with convex norm. Some extra
terms are added to the cost function. A generalized form for
weighted norm approximation problem is

min
h
kx� Ahk2 þ kWhkp ð7Þ

or

min
h
kWhkp; s:t: kx� Ahk2

< � ð8Þ

When W is kI (I is an identity matrix) and p = 0, it degrades to Eq.
(5). However, Eq. (5) is not a convex problem. If p P 1, it would
transform to a convex optimization problem and many techniques,
such as interior-method [4], can be applied. Some well-established
software can solve the problem efficiently, e.g. SeDuMi toolbox [5].

3.1.1. Diagonal loading least squares (‘2 Regularization)
Diagonal Loading Least Squares (DL-LSs) is suggested [6] to esti-

mate time delay. It can be used here to estimate DOAs and means
an answer to an optimization problem:

min
h
kx� Ahk2 þ kWhk2

2 ð9Þ

ĥ ¼ ðAHAþWHWÞ�1AHx ð10Þ

For simplicity, W = kI. Introducing a regularization item makes
the result to satisfy (AHA + WHW)h = AHxinstead of AHAh = AHx. If
W is orthogonal to h, i.e. Wh = 0, the veracity would not be harmed.
However, W is difficult to determine. In order to simplify the func-
tion, a sub-optimal solution is proposed: The primary estimated re-
sponse, �h’s reciprocal is introduced as diagonal loading item. It
should be noted that the absolute value should be calculated to keep
the loading items’ positive. W ¼ diagð1:= j �hjÞ. �h ¼ ðAHAþ kIÞ�1AHx,
where k is set as the noise’s power. k is of small importance, because
re-loading weakens improper k’s impact.

DLLS is a case of Tikhonov regression, of which the Tikhonov
matrix is W.

3.1.2. ‘1 Regularization
Unfortunately, ‘2 minimization is difficult to find a K-sparse

solution, instead returning a non-sparse result with many nonzero
elements. It also shows in simulation A that DLLS has the poorest
resolution capability. Hence, ‘1 minimization is dominate for
sparse recovery. LASSO is short for Least Absolute Selection and
Shrinkage Operator, estimating Least Squares parameters with a
penalty on the ‘1 norm, and several different methods are pre-
sented in [7]. In our single snapshot DOA application, when the sig-
nals are complex signals, A and x in Eq. (5) for LASSO should be
replaced by [real (A);imag (A)] and [real (x);imag (x)].

Most of the relaxation algorithms for Eq. (5) are some special
cases of Eq. (8), while LASSO with I = W and p = 1.

3.2. Greedy pursuit

Matching Pursuit is a classical greedy algorithm [8]. By project-
ing h automatically to all of the selected elements orthogonally,
The vector h is iteratively calculated. In the first iteration, the
approximation error is the signal itself, and the nonzero element
of h is supposed as one. After an implementation, the index is
determined corresponding to the largest item of inner product be-
tween the approximation error and A’s columns. Some researchers
proposed the improved methods. Orthogonal Matching Pursuit [9]
achieves better performance by projecting h to the dictionaries.
OMP requires more computation and storage cost than MP. [10]
proposed fast approximations, in form of Gradient Pursuit, Conju-
gate Gradient Pursuit and Approximate Conjugate Gradient Pur-
suit. These methods have similar computation complexities and
memory requirements.

4. Simulation

In the numerical simulations, single-snapshot DOA is performed
by several CS tools that have been introduced in the last section.

4.1. Algorithms compare

A ULA with 30 sensors is assumed. The received data is com-
posed of five narrowband signals shown in Table 1. The center fre-
quency fc = 2 KHz and the sampling frequency fs = 10 KHz. 100
snapshots are observed.

All of the three CS methods can estimate DOA accurately in
Fig. 1. OMP is computed by QR decomposition, and LASSO by
Grafting [10]. Single-snapshot estimation results are fluctuant
with time. The average of single-snapshot estimation results
are also shown in Figs. 1 and 2. The CS methods are robust for
both coherent and incoherent signals, and can be applied in sce-
nario of single snapshot, while MUSIC requires snapshot number
larger than sensor number. Furthermore, the CS methods are still
effective when sources number is greater than sensor number in
Fig. 3.
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