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a b s t r a c t

This study uses both the theoretical matrix and finite element methods to simulate the three-dimen-
sional (3D) wave propagation in elastic layered soils with a harmonic point load acting on the surface.
Choosing different multi-layer cases (two, four and eight layers) where the point load is in horizontal
or vertical direction, we first investigated the accuracy of the two methods, and the comparisons indicate
that the results from both are in good agreement. Few authors have investigated the irregular wave
amplitude of the Love wave induced in layered soils. This study indicates that the Love wave, unlike
the Rayleigh wave, might generate larger ground vibrations for a wave located far away from the source,
which is called wave hump in this paper. A ratio of the Young’s modulus between the top and bottom soil
layers larger than three may cause obvious this condition. Moreover, a layer thickness between 0.5 and
1.5 times the wave length in the first soil layer can significantly change the magnitude of the wave hump.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Wave propagation in layered soil is an important but compli-
cated problem. There are a number of theoretical matrix and
numerical solutions [1–7] in assessing the issue. However, they of-
ten focus on the surface wave propagation induced by vertical
loading, and not many studies relate to horizontal loading [8,9].
Moreover, the irregular magnitudes of surface waves in layered
soils, including Rayleigh and Love waves, are rarely discussed in
the literature. Although the medium for propagation is focused
on the layered soil in this paper, it is worth mentioning that the
complicated characteristic of wave propagation is existed not only
in layered soil but also in other medium, such as the ocean (fluids)
with a poroelastic seabed. Based on the Biot’s theory, investigation
of the elastic wave propagation in a fluid-saturated porous solid
has also been performed in the topic of ocean acoustics. Several re-
searches are presented in this paper. Gilbert and Lin [10] investi-
gate the propagating solutions of the acoustic equation in a
stratified shallow ocean with a poroelastic, semi-infinite seabed.
Schmidt and Jensen [11] presented a numerical solution technique
for wave propagation in horizontally stratified viscoelastic media
using the Thomson–Haskell solution technique. Buchanan and Gil-
bert [12] developed a system of differential equations derived from
Biot’s constitutive and motion equations for a poroelastic material

in a one-layer seabed. Obrezanova and Rabinovich [13] investi-
gated sound propagation from moving sources in stratified wave-
guides by deriving an asymptotic representation for the acoustic
field generated by a moving point source. Kumar and Hundal
[14] derived a frequency equation connecting the phase velocity
with wave number to estimate the surface wave propagation in a
fluid saturated incompressible porous half-space lying under a
double-layer. All the above references regarding ocean waves
found that the pressure is not uniformly decayed, which means
that a larger pressure can be measured while the distance from
the source is more distant. However, the above phenomenon has
not been clearly investigated for the wave propagation in soils,
although some references [15–17] contained numerical or experi-
mental results representing this event.

Layered soils under external force might generate surface vibra-
tion caused by wave propagation, and the complicated dynamic
behavior of layered soils arises due to the interactions of reflection
and refraction of waves at the medium interface of the layers.
Therefore, the greater the number of layers, the more complicated
the behavior. In the literature, the solution usually contains two or
three soil layers, and not more than four. In this study, we utilized
the finite element method and theoretical matrix method modified
from Jones and Petyt [4] to simulate the wave propagation in layer
soils with harmonic vertical and horizontal point loads acting on
the surface, and the accuracy of the two methods for problems
with two to eight soil layers were first examined. Then, the irreg-
ular surface wave propagations, including Rayleigh and Love
waves, in layered soils was investigated in this study.
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2. Modeling and derivation of simulation methods

The problem is a half infinite domain with layered soils, and a 2a
(=0.6 m) by 2b (=0.6 m) square area on the ground is subjected to a
sine wave load with the magnitude (p) of 1 N in the Y or Z direction,
where the negative Z direction is the direction of gravity. The two
methods, theoretical matrix and finite element, are described
below.

2.1. Theoretical matrix method

To investigate the steady state vibration behavior of the wave
propagation, Navier’s elastodynamic equation neglecting the body
force is used, as follows:

ðkþ lÞ @D
@xi
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where xi and ui are the ith components of the Cartesian coordinate
vector (X, Y, Z) and displacement vector (u, v, w), and the complex
lamb constants are defined as follows:
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where g is the loss factor, m is the Poisson’s ratio, and E is Young’s
modulus. Using the derivation in Kramer [18], one can obtain that
g = 2D, in which D is the damping ratio. Differentiating Eq. (1) by
each component of the vectors (x, y, z) individually, one obtains:
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Treating each component of Eq. (4) using the double Fourier
transform represented by notation F, summing equations of each
component i, and rearranging the items, we obtain:
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q , and b and c are wave numbers in
the x and y directions, respectively. After the ordinary differential
Eq. (5) is solved, the following general solution can be obtained:

D̂ ¼ Ae�a1z þ Bea1z; a1 ¼ ðb2 þ c2 � /2
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where a1 ¼ ðb2 þ c2 � /2
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1=2, A and B are the constants of integra-
tion. Eq. (4) is then applied to the double Fourier transform, and
D̂ is replaced by the right side of Eq. (6). Eq. (7) can thus be deter-
mined as follows:
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ŵ

8><
>:

9>=
>; ¼ � kþ l

l

� � ibðAe�a1z þ Bea1zÞ
icðAe�a1z þ Bea1zÞ

a1ð�Ae�a1z þ Bea1zÞ

0
B@

1
CA ð7Þ

where a2
2 ¼ b2 þ c2 � /2

2, /2
2 ¼ x2

c2
s
, and c2

s ¼
l
q

The general solution of Eq. (7), named transformed displace-
ment, can be written as

Û ¼ fû; v̂ ; ŵgT ¼ Ûh þ Ûp ð8Þ

The subscripts h and p are homogenous and particular solutions,
respectively. To find the solution of the ordinary differential Eq. (7),
we introduce the stress–strain relations and take their double Fou-
rier transform into the wavenumber domain. Two kinds of bound-
ary conditions on the surface are defined as: (1) surface out loading
in the Z (vertical) direction, and (2) surface out loading in the Y
(horizontal) direction.
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The subscript i in Eq. (9) corresponds to the loading direction.
After this operation, we can obtain the algebraic relationship
among the displacements Û, the stresses ŝ, and the square matrix
fTg whose coefficients are composed of both the soil parameters
and the wavenumbers for each layer. i.e.

fTg6�6½Û�6�1 ¼ ½ŝ�6�1 ð10Þ

Regarding the matrix fTg of each layer as a 6 by 6 sub-matrix,
and assembling and rearranging both the row and column num-
bers of each layer, fTgjith layer can be combined into the global soil
matrix {K}|g of the whole layers based on the assumptions of con-
tinuity in the interface of each layer and boundary conditions, and
the global transformed displacements for all layers can be written
as Eq. (11):

½Û�g ¼ fKg
�1
g ½s�g ð11Þ

Finally, the inverse double Fourier transform of the vector ½Û�g is
calculated to obtain the displacement vector ½U�g of each layer, i.e.,
the 3D displacements of all layers.

2.2. Finite element method

Due to the symmetry of the problem, a half finite element mod-
el is generated with the symmetry along the surface of X = 0, where
rollers are set on that surface. The Newmark direct integration
method with the average acceleration was used to solve this prob-
lem with the solution scheme of the SSOR (Symmetric Successive
Over-Relaxation) preconditioned conjugated gradient method
[19]. The finite element model is 30.75 m, 48 m, and 20 m in the
X, Y, and Z directions generated with the isoparametric 8-node so-
lid elements. The solid element size is 0.15 m and the consistent
mass scheme is used. The time step length is 0.01 s, with 4096 time
steps simulated. Rayleigh damping was used in this study, and the
two factors of a and b ([Damping] = a[Mass] + b[Stiffness]) for the
soil equal 8.0085/s and 1.9915 � 10�4 s, respectively, which gives
a 5% damping ratio at a frequency of 16 Hz and 64 Hz. If another
damping ratio is used, the two factors are modified proportionally.
Excluding the top surface and the symmetric surface (leftmost sur-
face), the absorbing boundary conditions are set along the other
four surfaces to avoid fake reflected waves on the mesh bound-
aries. The theory of the absorbing boundary condition is explained
as follows [20]:
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where x1 is the coordinate with the positive direction pointing into
the domain, while x1 = 0 is at the absorbing boundary, ui is the xi-dis-
placement at the boundary, and ci is the i-direction velocity over the
cosine of the incidence angle, and it can be evaluated as follows [20]:
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where N is the selected nodes near the boundary, and uik is xi-dis-
placement at the kth selected node. The forward Euler method
deriving from Eq. (12) is then

ui;nþ1 ¼ ui;n þ Dtci
@ui;n

@x1
ð14Þ

where ui,n is the i-direction displacement at the last time step, ui,n+1

is the i-direction displacement (ui) at the current time step, and Dt
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