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a b s t r a c t 

The two-component jet flow with heat transfer in a channel is numerically investigated by the pseudo- 

potential lattice Boltzmann method using discretized force treatment coupled with passive-scalar ap- 

proach. The influences of interaction strength, Reynolds number and Prandtl number of jetting and sur- 

rounding fluids on jet flow with heat transfer in a channel are analyzed. Numerical results show that the 

extrusion effect, which derives from these influence factors, is prominent for fluid distribution and flow. 

© 2016 Published by Elsevier Ltd. 

1. Introduction 

Jet flow we are concerned with in this article is an efflux of 

fluid that is projected into another surrounding fluid, which widely 

exists in engineering industries, aerospace applications and process 

industries [1–3] . Such a thermal two-component fluid-fluid flow is 

always a hard task in computational fluid dynamics (CFD). For ex- 

ample, complex components diffusion, the generation and moving 

of a large number of small scattered the interface between fluids 

are quite difficult for the conventional CFD methods. Recently, the 

lattice Boltzmann method (LBM) has shown great potential in sim- 

ulating complex fluid systems [4–9] , especially in multicomponent 

and multiphase flow [10–15] . In fact, the macro dynamic behav- 

ior of multicomponent and multiphase fluid flow is a macro view 

of the micro interaction between components or phases. The mi- 

croscopic nature and mesoscopic characteristics of LBM make it be 

able to directly describe this micro interaction. 

Several lattice Boltzmann (LB) approaches have been proposed 

to describe multicomponent and multiphase flows [16–19] . The 

pseudo-potential approach developed by Shan and Chen is based 

on pairwise molecular interactions [17,20,21] . Once the interactions 

are properly chosen, spontaneous separation between the differ- 

ent fluid components occurs. This is one of the most successful LB 

multicomponent and multiphase approaches due to its ease im- 

plementation [22,23] . In previous work, we showed the advantage 
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of pseudo-potential LBM compared to the conventional volume-of- 

fluid method in simulating jet flow, including its ability for de- 

scribing the repulsive forces and the transition region between 

different fluids. We also improved pseudo-potential approach by 

using discretized force treatment for higher numerical stability 

[24] . 

In this paper, double-distribution-function approach [25–28] , in 

which density field and temperature field are described by differ- 

ent LB equations, is used to realize the heat transfer. The pseudo- 

potential approach using discretized force treatment is adopted for 

density field. For temperature field, the passive-scalar approach is 

chosen because of its simple in form, numerical stability and ac- 

curacy [25,26,28] . Effect of interaction strength, Reynolds number 

and Prandtl number of jetting and surrounding fluids on jet flow 

with heat transfer in a channel are investigated. 

The remaining part of this paper is organized as follows. In 

Section 2 , the double-distribution-function LB model is described. 

In Section 3 , the LB model is validated to be suitable for jet flow 

with heat transfer in this paper. In Section 4 , numerical simula- 

tions and results are presented and discussed. Finally, conclusions 

are drawn in Section 5 . 

2. Numerical model 

The double-distribution-function LBM is adopted in this article 

for jet flow with heat transfer. The pseudo-potential approach with 

discretized force treatment for density field and the passive-scalar 

approach for temperature field will be described in this section. 
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2.1. Density field 

In the pseudo-potential LBM [17] , state of all the component 

fluids are described by the velocity distribution f σα ( x , t) , which in- 

dicates the number of fluid particles belonging to the component 

σ with velocity e α at node x and time t . The temporal evolution 

equation of f σα (x , t) is the LB equation, which can be derived as 

a discrete Boltzmann equation so that the velocity space is dis- 

cretized in addition to physical space and time. The multicompo- 

nent discrete Boltzmann with discretized force F σα (x , t) is given as 

follow [24] : 

f σα (x + e αδt, t + δt) − f σα (x , t) 

= − 1 

τσ
f 

[
f σα (x , t) − f σ,eq 

α (x , t) 
]

+ F σα (x , t ) δt , (1) 

where δt is the time step, f σα (x , t) is the equilibrium distribution 

function and τσ
f 

is the collision relaxation time, which has the re- 

lationship with kinematic viscosity νσ as: 

νσ = 

2 τσ
f 

− 1 

6 

(δx ) 
2 

δt 
, (2) 

where δx is the lattice step, and c = δx / δt is the lattice speed. 

The equilibrium distribution function f 
σ,eq 
α is given by: 

f σ,eq 
α = ω αρ

σ

[
1 + 

e α · u 

eq 

c 2 s 

+ 

( e α · u 

eq ) 
2 

2 c 4 s 

− ( u 

eq ) 
2 

2 c 2 s 

]
, (3) 

where the values of weighting coefficient ω α , discrete velocity e α
and sound speed c s are related to form of lattices, and we choose 

D2Q9 model, which is the widely used in two-dimensional simu- 

lations. For D2Q9 model, ω 0 = 4/9, ω α= 1/9 (α = 1 − 4) , ω α= 1/36 

(α = 5 − 8) ; e 0 = (0 , 0) , e α = c ( cos [(α − 1) π/ 2] , sin [(α − 1) π/ 2] ) 
(α = 1 − 4) , e α = 

√ 

2 c ( cos [(2 α − 1) π/ 4] , sin [(2 α − 1) π/ 4] ) (α = 

5 − 8) ; and c s = c/ 
√ 

3 . In additions, ρσ is the local density of 

the component σ , which can be calculated by ρσ = 

∑ 

α f σα , and 

ρ = 

∑ 

σ ρσ is the total density of the mixture fluid. Besides, 

since the total momentum of particles of all components should 

be conserved, the effective flow velocity of mixture fluid u 

eq is 

calculated by: 

u 

eq = 

∑ 

σ ρσ u 

σ / τσ
f ∑ 

σ ρσ / τσ
f 

, (4) 

where the flow velocity u 

σ for each components are obtained as: 

ρσ u 

σ = 

∑ 

α

f σα e α+ 

1 

2 

F σ δt. (5) 

The force term F σ here is the interparticle force in the pseudo- 

potential approach, and it is defined as the sum of all interparti- 

cle forces between particles at node x and its surrounding nodes 

x ′ [17] : 

F σ (x ) = −ψ 

σ (x ) 
∑ 

x ′ 

∑ 

σ

G σσ (x , x 

′ ) ψ 

σ (x 

′ )(x 

′ − x ) , (6) 

where the effective density ψ 

σ ( x ) is defined as a function of the 

density of the σ th component at node x , and we choose ψ 

σ (x ) = 

ρσ (x ) in this work [29] . G σσ (x , x ′ ) controls the strength of the 

interaction potential between components σ and σ . For a D2Q9 

model, G σσ (x , x ′ ) is given by G σσ (x , x ′ ) = g σσ (| x − x ′ | = 1) and 

G σσ (x , x ′ ) = g σσ / 4 (| x − x ′ | = 

√ 

2 ) . Phase separation between com- 

ponents occurs automatically when the interaction strength g σσ

are properly chosen. Besides, g σσ can control the mutual solubility 

of components. 

The forcing scheme plays an important role in the pseudo- 

potential LB model [30,31] . The shortage of the original pseudo- 

potential model is due in large part to Shan-Chen’s forcing scheme. 

This interparticle force F σ is now introduced to Eq. (1) after being 

discretized according to velocity space, and the discretized force 

term can be express as [32] : 

F σα = 

(
1 − 1 

2 τσ
f 

)
ω α

[
e α − u 

eq 

c 2 s 

+ 

e α · u 

eq 

c 4 s 

e α

]
· F σ . (7) 

This force treatment makes pseudo-potential LBM more stable 

and accurate than the original one mainly due to the smaller spu- 

rious velocity [24] . Of course, this treatment can not let the multi- 

component fluid model handle large quantities contrasts without 

compromising stability and accuracy of the numerical solutions, 

since the spurious velocity still exists. For example, we have tested 

that the maximum of viscosity ratio for static bubble case is 4510, 

in which the relaxation parameter τ of fluid in the bubble is 5.01 

and the one out of the bubble is 0.501. 

τ = 5.01 is, however, significantly larger than the typical range 

used for τ in LBM simulations. τ > 0.5 is necessary to ensure the 

numerical stability of the LBM simulations [33] and τ = < 1.0 is typ- 

ically used for numerical accuracy of the results [40,41] . Although 

LBM simulations with τ > 1.0 were previously reported in the lit- 

erature [34,40] , caution should be taken for numerical accuracy of 

the results for τ > 1.0. 

The total flow velocity of mixture fluid is given by: 

u = 

∑ 

σ ρσ u 

σ∑ 

σ ρσ
. (8) 

The treatment here is different from the model presented by 

Porter et al. [34] in that we use Guo et al.’s forcing scheme, 

whereas Porter et al. use He et al.’s [35] . He et al.’s forcing scheme 

comes from continuous Boltzmann equation. It assumes that dis- 

tribution function can be approximated as equilibrium distribution, 

which is without rigorous proof. Besides, both the redefined equi- 

librium distribution function and the forcing term contain terms 

of order u 3 , which is inconsistent with the whole system. On the 

other hand, Guo et al.’s forcing scheme is based on expansion 

method of particle velocity, and its parameters are determined by 

Chapman-Enskog analysis. It can lead to the exact Navier-Stokes 

equations [32] . 

2.2. Temperature field 

The passive-scalar approach neglects the viscous heat dissipa- 

tion and compression work carried out by the pressure, then it 

satisfies the following equation [25,26] : 

∂T 

∂t 
+ ∇ · (u T ) = ∇ · (χ∇T ) , (9) 

where χ is the thermal diffusivity and T is temperature. The evo- 

lution equation of the temperature distribution function T α is as 

follow: 

T α(x + e αδt, t + δt) − T α(x , t) = − 1 

τT 

[
T α(x , t) − T eq 

α (x , t) 
]
, (10) 

where temperature equilibrium distribution function T 
eq 
α (x , t) is 

given by: 

T eq 
α = ω αT 

[
1 + 

e α · u 

c 2 s 

+ 

( e α · u ) 
2 

2 c 4 s 

− u 

2 

2 c 2 s 

]
. (11) 

τ T is temperature relaxation time for the mixture fluid, which de- 

pends on density of components, and it can be calculated by [28] : 

τT = 

∑ 

σ

ρσ τ σ
T 

ρ
, (12) 

where τσ
T is temperature relaxation time of the component σ . In 

addition, τ T has the relationship with thermal diffusivity χ as: 

χ = 

2 τT − 1 

6 

(δx ) 
2 

δt 
. (13) 
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