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a b s t r a c t 

This paper presents efforts to improve the boundary efficiency and accuracy of a compact finite differ- 

ence scheme, based on its composite template. Unlike precursory attempts the current methodology is 

unique in its quantification of dispersion and dissipation errors, which are only evaluated after the matrix 

system of equations has been rearranged for the derivative. This results in a more accurate prediction of 

the boundary performance, since the analysis is directly based on how the derivative is represented in 

simulations. A genetic algorithm acts as a comprehensive method for the optimisation of the boundary 

coefficients, incorporating an eigenvalue constraint for the linear stability of the matrix system of equa- 

tions. The performance of the optimised composite template is tested on one-dimensional linear wave 

convection and two-dimensional inviscid vortex convection problems, with uniform and curvilinear grids. 

In all cases, it yields substantial accuracy and efficiency improvements while maintaining stable solutions 

and fourth-order accuracy. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

Compact finite differences are numerical schemes used to accu- 

rately calculate derivatives. They are implicit in nature, based upon 

a banded Hermitian matrix system of equations. Although invert- 

ing such a system requires a higher computational cost, they can 

offer vastly superior resolution for a given stencil size compared 

to their explicit counterparts. This quality has made them increas- 

ingly popular in the fields of computational aeroacoustics (CAA) 

[1,2] , large eddy simulation (LES) [3–5] , and direct numerical simu- 

lation (DNS) [6–8] , particularly when high resolution is a necessity 

in order to properly resolve the relevant physical scales. 

Typically, central differences are used to construct compact 

schemes for use at interior nodes. However, such schemes are not 

always applicable at domain boundaries, and therefore in order to 

properly close the matrix system of equations non-central differ- 

ences are often a necessity. This unfortunately will have a detri- 

mental effect on accuracy; introducing additional dissipation as 

well as dispersion, if the boundary schemes are not sufficiently 

optimised. Consequently, to ensure that the same level of accu- 

racy is achieved throughout the entire domain, grid refinements 

are regularly made to the boundary regions. This will inevitably re- 
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duce computational efficiency due to the decreased time step re- 

quired by the smaller grid cells. The objective of this paper is to 

build upon past attempts to maximise boundary scheme perfor- 

mance, and thereby minimise efficiency losses, while also ensuring 

the combination of interior and boundary schemes meets require- 

ments for linear stability. 

As well as changes in formal order of accuracy, enhancements 

to compact schemes can also be achieved through coefficient op- 

timisation based on resolution characteristics. A previous attempt 

at this was undertaken by Kim [1] . Kim introduced a highly op- 

timised fourth-order pentadiagonal compact scheme and set of 

boundary closures particularly for CAA applications. Optimisations 

were based on an integral error measure between the exact and 

modified wavenumber solutions (similar to Kim and Lee [9] ). Very 

low resolution errors were obtained with this method, in particu- 

lar for the interior scheme, which remains below 0.1% over the grid 

spaced scaled wavenumber range 0 ≤ ω ≤ 0.839 π . The boundary 

schemes were designed to maintain the same stencil size and or- 

der of accuracy as the interior schemes, which was accomplished 

by employing extrapolation functions based on both polynomial 

and trigonometric series for solutions outside of the domain. Af- 

ter some algebraic manipulation, these were then converted into 

a set of non-central differences for use at the domain boundaries. 

The resultant boundary schemes were optimised by means of con- 

trol variables left open in the trigonometric series of each extrap- 

olation function. As in Carpenter et al. [10] the linear stability of 
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the matrix system was investigated using eigenvalue analysis. Kim 

[1] found that with a coarse grid the schemes contained some 

slightly positive eigenvalue components. Although, after some grid 

refinement it was demonstrated that these will tend towards zero, 

hence implying neutral stability. 

Liu et al. [11] expanded on the optimisation strategy of Kim 

[1] by introducing a sequential quadratic programming technique 

(SQP). This iteratively increased the upper limit of the optimisation 

range ( r ), establishing optimal values for both interior and bound- 

ary schemes. Furthermore, they showed that scheme stability is 

heavily dependent on the chosen error tolerances, as well as the 

formal order of accuracy, implying that the optimisation process 

can often be detrimental to the numerical stability. To compen- 

sate for this, Liu et al. [11] reduced the order of accuracy of their 

first and third boundary schemes by one stage. Such stability is- 

sues were also recognised by Carpenter et al. [10] , who suggested 

that a scheme’s numerical stability and its spectral resolution do 

not always coincide. 

Jordan [12] introduced an alternative approach for analysing 

spectral resolution properties through composite templates. Unlike 

the more traditional decoupled Fourier approach where the resolu- 

tion of each differencing stencil is studied separately, this consists 

of Fourier analysis of the whole matrix system of equations, con- 

sisting of both the interior and boundary stencils. The result is a 

set of pseudo-wavenumber curves for each point in the grid, de- 

pendent on the number of grid points used in the analysis. Jor- 

dan applied this analysis to tridiagonal systems, employing a least 

squares optimisation strategy to minimise the total resolution er- 

ror across the whole template. In a later paper Jordan [13] ap- 

plied the same technique to pentadiagonal systems producing a 

set of boundary closure schemes to be used alongside the inte- 

rior scheme of Kim [1] . Although the modified wavenumber curves 

produced by this technique are dependent on the number of grid 

points used in the analysis, they appear to be much more repre- 

sentative of the performance we achieve once schemes are applied 

to actual simulations. Despite this, it is still unclear how to best 

optimise the resolution properties of a given composite template, 

making it far from a trivial task. For instance one could priori- 

tise minimising the relative resolution error between neighbour- 

ing points in the composite template, or perhaps the aggregate 

resolution error of the whole template with respect to the exact 

wavenumber. 

This paper aims to extend the composite template strategy of 

Jordan [12] by redefining how the composite template modified 

wavenumber is evaluated. Unlike the original approach, Fourier 

analysis will not be conducted until the matrix system of equa- 

tions has already been rearranged for the derivative. This should 

lead to better predictions of the resolution properties attained in 

simulations because this is a closer depiction of how the deriva- 

tive is represented numerically. The chosen optimisation method 

is a Genetic Algorithm (GA) containing both an objective function 

for the composite template’s resolution characteristics, and a non- 

linear constraint for eigenvalue stability. In this paper, the optimi- 

sation procedure is applied to the pentadiagonal finite-difference 

system outlined by Kim [1] , although a similar approach would be 

applicable to other systems if desired. The newly optimised bound- 

ary closure coefficients are successful in producing large accuracy 

improvements while maintaining stable solutions in all test prob- 

lems. In addition to the primary optimisation which focuses on the 

aggregate resolution error of the composite template, further accu- 

racy enhancements are attempted by introducing pseudo-boundary 

schemes. Essentially these are tuned central schemes applied as in- 

termediate steps between the boundary and interior regions, with 

the aim of reducing the relative resolution error between consec- 

utive points. They are successful in achieving further accuracy im- 

provements, albeit with some penalty to numerical stability. 

The paper is organised as follows. Section 2 introduces the 

compact finite-difference system, and outlines the new composite 

template modified wavenumber analysis. Section 3 provides details 

of the boundary closure scheme coefficient optimisation procedure. 

This includes the optimisation platform, objective function and sta- 

bility constraints. Section 4 presents the optimisation results, in- 

cluding the resultant wavenumber characteristics and eigenvalue 

distribution. In Section 5 the performance of the newly optimised 

finite-difference system is tested in three benchmark problems, 

designed to analyse their performance in a variety of scenarios. 

In Section 6 pseudo-boundary schemes are introduced and their 

performance analysed. Finally concluding remarks are given in 

Section 7 . 

2. Compact finite difference schemes and composite template 

modified wavenumber analysis 

We consider the following general compact finite difference 

template, based on a pentadiagonal Hermitian matrix. It is con- 

structed from one central interior and three non-central boundary 

closure schemes, each in conservative form and utilising a seven- 

point stencil [1] . 

P ̄f ′ = 

1 

h 

Qf (1) 

where P and Q are the following (N + 1) × (N + 1) matrices 

P = 

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

1 γ01 γ02 0 · · · 0 0 0 0 

γ10 1 γ12 γ13 0 · · · 0 0 0 

γ20 γ21 1 γ23 γ24 0 · · · 0 0 

0 β α 1 α β 0 · · · 0 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

. . . 
0 · · · 0 β α 1 α β 0 

0 0 · · · 0 γ24 γ23 1 γ21 γ20 

0 0 0 · · · 0 γ13 γ12 1 γ10 

0 0 0 0 · · · 0 γ02 γ01 1 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

Q = 

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

b 00 b 01 b 02 b 03 b 04 b 05 b 06 0 0 · · · 0 
b 10 b 11 b 12 b 13 b 14 b 15 b 16 0 0 · · · 0 
b 20 b 21 b 22 b 23 b 24 b 25 b 26 0 0 · · · 0 
−a 3 −a 2 −a 1 0 a 1 a 2 a 3 0 0 · · · 0 

0 −a 3 −a 2 −a 1 0 a 1 a 2 a 3 0 · · · 0 
. 
. 
. 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

. . . 
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. 
. 

0 · · · 0 −a 3 −a 2 −a 1 0 a 1 a 2 a 3 0 
0 · · · 0 0 −a 3 −a 2 −a 1 0 a 1 a 2 a 3 
0 · · · 0 0 −b 26 −b 25 −b 24 −b 23 −b 22 −b 21 −b 20 

0 · · · 0 0 −b 16 −b 15 −b 14 −b 13 −b 12 −b 11 −b 10 

0 · · · 0 0 −b 06 −b 05 −b 04 −b 03 −b 02 −b 01 −b 00 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

and 

f̄ ′ = ( ̄f ′ 
0 
, f̄ ′ 

1 
, f̄ ′ 

2 
, . . . , f̄ ′ 

N 
) T , f = ( f 0 , f 1 , f 2 , . . . , f N ) 

T 

where f̄ ′ 
i 

is a finite difference approximation to the exact spatial 

derivative f ′ 
i 

at a nodal point i and b ii = −∑ 6 
j=0 , � = i b i j . The three 

boundary closure schemes are applied at the i = { 0 , N} , { 1 , N − 1 } 
and { 2 , N − 2 } nodes. They comprise of 27 unique coefficients: 

γi j for i = { 0 , 1 , 2 } j = { 0 , . . . , i + 2 } , � = i 
b i j for i = { 0 , 1 , 2 } j = { 0 , · · · , 6 } , � = i. 

(2) 

The central interior scheme consists of five coefficients ( α, β , a 1 , 

a 2, a 3), and is applied throughout the remainder of the domain 

( 3 ≤ i ≤ N − 3 ). The template we will consider in the current paper 

is fourth-order accurate in the interior and at the boundaries. For 

the interior nodes we implement the optimised fourth-order coef- 

ficients suggested by Kim [1] . (Full details of the interior scheme 

performance, including its modified wavenumber characteristics 

can be found in [1] .) 
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