
Computers and Fluids 121 (2015) 37–43

Contents lists available at ScienceDirect

Computers and Fluids

journal homepage: www.elsevier.com/locate/compfluid

Performance of a projection method for incompressible flows

on heterogeneous hardware

Tobias Kempe a,∗, Alvaro Aguilera b, Wolfgang Nagel b, Jochen Fröhlich a

a Institute of Fluid Mechanics, Technische Universität Dresden, George-Bähr Str. 3c, 01062 Dresden, Germany
b Center for Information Services and High Performance Computing (ZIH), Technische Universität Dresden, Zellescher Weg 12, 01062 Dresden, Germany

a r t i c l e i n f o

Article history:

Received 31 March 2015

Revised 29 July 2015

Accepted 31 July 2015

Available online 18 August 2015

Keywords:

Incompressible flow

Projection method

Poisson equation

GPU acceleration

PETSc

Hypre

a b s t r a c t

Practical experiments on the flow in a lid-driven cavity are carried out to compare the performance of a

second-order finite volume Navier–Stokes solver for incompressible fluids employing a projection method,

when using various linear solver libraries on central processing units (CPUs) and graphical processing units

(GPUs). The goal of the paper is to identify the potential of GPU acceleration using the built-in GPU solvers

of PETSc and to provide information if the usage of GPUs is beneficial for this type of fluid solver in terms

of performance and implementation effort. Additionally, energy consumption having emerged as another

important goal of optimization in high-performance computing is addressed as well. In this study, the solvers

available in the PETSc library, which are running on CPU as well as with GPU support, are compared with the

solvers provided by the hypre library in a systematic way. The power consumption of the CPU and the GPU

during the solution is measured to assess the energy efficiency in terms of the performance-per-Watt ratio.

It is found that for the considered numerical scheme the usage of iterative solvers on current GPU systems is

not necessarily beneficial, neither in terms of performance nor in terms of energy consumption, since both

libraries, PETSc and hypre, provide highly-optimized solvers for massively parallel CPU systems.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Graphical processing units (GPUs) originally developed for com-

puter games nowadays are widely used to perform scientific and

engineering simulations. In particular, they are strictly used as com-

puting core in some of the most performant supercomputing facilities

[4]. Along with performance and implementation issues, the total

energy consumption required for numerical solution of a physical

problem is a topic that has gained notoriety over the last decade since

the size of new high-performance computing facilities is being in-

creasingly constrained by the energy requirements of both the com-

puting and the cooling infrastructure [20]. The Tianhe-2 system at

the National Super Computer Center in Guangzhou, China, the fastest

system created until now, is an example. Its power consumption

is almost 18MW when working at full capacity [4]. Heterogeneous

hardware platforms, combining central processing units (CPUs)

and GPUs, allow significant savings of computing time and power

consumption for some applications, e.g. [13,19,27] to name but a few.

∗ Corresponding author. Tel.: +4935146336651.

E-mail addresses: tobias.kempe@tu-dresden.de (T. Kempe), alvaro.aguilera@tu-

dresden.de (A. Aguilera), wolfgang.nagel@tu-dresden.de (W. Nagel),

jochen.froehlich@tu-dresden.de (J. Fröhlich).

Collange et al. [11], for example, investigated how computations

and memory accesses impact the power consumption of Nvidia GPUs.

In the study of Huang et al. [19] the energy efficiency of GPUs for sci-

entific computing was investigated for the case of the electrostatic

potential generated by charges inside a molecule and significant ad-

vantages of the GPU over the CPU were found with respect to energy

consumption and computing time. Ma et al. [27] present a model to

dynamically estimate the power consumption of the GPU and to in-

crease the performance per Watt ratio by an automated selection ap-

proach of choosing near-optimal energy efficient GPU programming

configurations. Enos et al. [13] investigated the performance per Watt

of four scientific applications that were ported on GPUs. The results

indicate that although GPUs significantly increase power consump-

tion, the provided acceleration results in a reduction of the overall

power consumption.

In computational fluid dynamics (CFD) the direct numerical sim-

ulation (DNS) of turbulent single phase and multiphase flows in

general is very expensive, even at low to moderate Reynolds num-

bers. Various authors address energy consumption [31] and re-

port on significant acceleration of the their CFD codes using GPUs

[7,12,16,28,30,35]. However, the authors of [31] state that “existing

codes needs to be ported and optimized, a procedure which is not

yet standardized and may require non trivial efforts, even to high-

performance computing specialists”.

http://dx.doi.org/10.1016/j.compfluid.2015.07.028

0045-7930/© 2015 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.compfluid.2015.07.028
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compfluid
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compfluid.2015.07.028&domain=pdf
mailto:tobias.kempe@tu-dresden.de
mailto:alvaro.aguilera@tu-dresden.de
mailto:wolfgang.nagel@tu-dresden.de
mailto:jochen.froehlich@tu-dresden.de
http://dx.doi.org/10.1016/j.compfluid.2015.07.028


38 T. Kempe et al. / Computers and Fluids 121 (2015) 37–43

The purpose of the present study is to investigate the potential

for efficiency increase of a CFD code with the help of GPUs, when

employing a discretization scheme widely used for incompressible

flows. It is based on the solution of an elliptic equation for the

pressure correction. The chosen configuration is a three-dimensional

driven cavity which is representative for a wide range of applications.

The cost functions investigated are computational speed, energy con-

sumption and implementation effort.

2. Numerical method and problem definition

2.1. Description of the flow solver

The solver employed in the present study is the in-house code

PRIME (Phase-Resolving sIMulation Environment), an immersed

boundary method (IBM) finite-volume solver for multiphase flows

[21–24]. It is routinely used for high-performance computing of un-

steady multiphase flow problems on billions of grid points and thou-

sands of processors. A physical problem addressed in such sim-

ulations, for example, is the transport of sediment in riverbeds

[25,32–34]. An Eulerian–Lagrangian IBM is constituted of three com-

ponents, a fluid-solver on a generally regular Cartesian – Eulerian

background grid covering the entire computational domain, a de-

scription of the Lagrangian motion of the disperse phase, and a cou-

pling mechanism by an IBM.

In the present study, only the Eulerian solver for incompressible

flow on the regular grid is employed. The governing equations are the

unsteady three-dimensional Navier–Stokes equations for Newtonian

fluids of constant density

∇ · u = 0, (1)

∂u

∂t
+ ∇ · (uu) = − 1

ρ f

∇p + ν f ∇2 u. (2)

The nomenclature is as usual, with u = (u, v, w)T designating the ve-

locity vector in Cartesian components along the Cartesian coordi-

nates x, y, z, while t represents time, p pressure, ρ f the fluid density,

and ν f the kinematic viscosity of the fluid. An efficient approach for

the numerical solution of problems involving incompressible fluids

is a projection method, as proposed by Chorin [10]. In algorithms of

this class, the solution of the nonlinear system of Eqs. (1) and (2) is

split into the following two consecutive steps. First, a non divergence-

free intermediate velocity field is computed neglecting the pressure

term or using the pressure field of the previous time level. In the sec-

ond step, the pressure at the new time level is determined and the

intermediate velocity field is projected onto a divergence free field.

The projection step requires the solution of an elliptic equation - the

pressure correction Poisson equation. It is derived by applying the

divergence operator to the momentum equation (2) and using the in-

compressibility condition (1).

To simplify the study, the basic fluid solver of [23] is used here

in a slightly modified version. The implicit treatment of the viscous

terms in (2) yields a linear system of Helmholtz type. This is omit-

ted here and the time advancement is accomplished by an explicit

three-step third-order low-storage Runge–Kutta scheme for the con-

vective terms and the viscous terms as well. The temporal discretiza-

tion scheme can be summarized as follows

ũ − uk−1

�t
= −2 αk 1

ρ f

∇p k−1 − γ k (∇ · (uu)
k−1 + ν f ∇2u k−1)

− ζ k (∇ · (uu)
k−2 + ν f ∇2u k−2) (3a)

∇2σ k = ∇ · ũ (3b)

uk = ũ − ∇σ k (3c)

pk = pk−1 + σ k

2 αk �t
, (3d)

where the superscript k denotes the Runge–Kutta sub-step, with the

corresponding coefficients αk, γ k and ζ k given in [23]. First, an in-

termediate velocity field ũ according to (3a) is computed using the

pressure of the previous sub-step, pk−1. The solution of the Poisson

equation (3b) to obtain the pressure correction σ and the projection

step (3c) yields the divergence-free velocity field uk. The pressure

field subsequently is updated by (3d).

The spatial discretization of (1) and (2) is performed by a central

second-order finite-volume scheme on a staggered Cartesian grid [18]

for all terms. The parallelization of the code is accomplished by a

domain decomposition approach with explicit MPI communications

employing ghost cells in the PETSc framework.

2.2. Solution of linear systems of equations

At various stages of the numerical scheme, the solution of linear

systems of equations is required. Usually, this is the Poisson equation

for the pressure (3b). In case the viscous terms are treated implic-

itly, (3a) is modified and requires the solution of a linear equation of

Helmholtz type [23]. This is not performed here, as this equation is

similar to the Poisson equation for the pressure correction and would

make the assessment more complicated here by introducing further

algorithmic degrees of freedom without changing the conclusions. In-

deed the solution of the Poisson equation (3b) for single as well as for

multiphase applications, usually is the most time consuming part of

the overall solution procedure. It requires up to 80 to 95 % of the total

computing time, and hence efficient solvers for this part are essential

for a good performance of the entire code.

Currently, the linear solvers provided by the hypre library [14] are

used with great success on massively parallel systems and are rou-

tinely employed by the authors. To explore possible improvements of

the code in terms of performance and energy consumption, practical

experiments with an alternative solver library are conducted in this

paper. While hypre does not provide GPU support, the PETSc library

[9], in addition to a variety of linear solvers running on CPU, in recent

time, also contains options for GPUs [29].

The key idea of the paper is to compare the performance and en-

ergy efficiency of the solvers provided by hypre with the solvers of

PETSc, without or with GPU support. The strategy is to compare iden-

tical solvers on single and multiple-cores of a CPU and on a GPU as

well as the best available solver on CPU versus the best available

solver on GPU. This provides first of all information for practitioners.

Second, it allows to obtain an assessment of the considered method

in a more general sense and to inform on the performance for simi-

lar solvers, e.g. treating the Helmholz equation. The following solvers

and corresponding labels are used in the paper:

hypre

• H1: Conjugate gradient (CG) without preconditioner
• H2: CG with parallel semicoarsening multigrid (PFMG) precondi-

tioner
• H3: Biconjugate gradient stabilized method (BiCGSTAB) with

PFMG preconditioner

PETSc

• P1: CG without preconditioner
• P2: CG with algebraic multigrid (PCML) preconditioner

PETSc with GPU support

• PGPU1: CG without preconditioner
• PGPU2: CG with NVIDIA smoothed aggregation (CUSP) precondi-

tioner



Download English Version:

https://daneshyari.com/en/article/761297

Download Persian Version:

https://daneshyari.com/article/761297

Daneshyari.com

https://daneshyari.com/en/article/761297
https://daneshyari.com/article/761297
https://daneshyari.com

