
Computers and Fluids 121 (2015) 114–132

Contents lists available at ScienceDirect

Computers and Fluids

journal homepage: www.elsevier.com/locate/compfluid

Volumetric geometry for DSMC and the Voldipar code

Craig Turansky∗, Brian Argrow

University of Colorado, Boulder, Colorado 80309, USA

a r t i c l e i n f o

Article history:

Received 26 February 2014

Revised 18 April 2015

Accepted 11 August 2015

Available online 18 August 2015

Keywords:

Rarefied

DSMC

Volumetric

Rasterization

Voxelization

Hypersonic

Verification

a b s t r a c t

A quantized, volume-based approach to representing geometry in direct simulation Monte Carlo (DSMC)

simulations is presented, and its implementation in a reference code is assessed. Volumetric or dis-

crete/rasterized geometry is shown to be an acceptable way to perform, and possibly accelerate, the particle

movement step of the DSMC algorithm. Canonical flow problems are solved that demonstrate the effective-

ness of this method. These simulations capture expected results to within a few percent of results obtained

from established codes in two-dimensions, and to within engineering tolerances for three-dimensions. The

excellent scaling behavior of this approach may allow for high-resolution simulations in significantly less

time than more classical geometry representations in DSMC for a given cell gridding method.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Computational rarefied gas dynamics simulations are now most

often performed with the direct simulation Monte Carlo (DSMC)

method [1,2]. While many investigators may create their own

DSMC codes, most are not described in great detail; nor are they

codes that are large-scale and general-purpose. The DSMC codes

that might be considered complete research tools include G. Bird’s

DS2V/DS3V family of tools [2–4], NASA’s DAC [5,6] by G. LeBeau, and

the University of Michigan’s MONACO [7] which is maintained by

I. Boyd.

These three codes can simulate common rarefied, hypersonic flow

problems such as low-orbiting and re-entering spacecraft, and do so

without restrictions on object geometry. The MONACO code utilizes

a classical model of object geometry that has long been common in

computational fluid dynamics (CFD). In this model, a computational

mesh is formed that conforms in some meaningful way to an object

over which flow is to be simulated. This mesh is composed of often

disparately-sized polygons or polyhedra that form the collision cells

in DSMC. Such a mesh is often constructed (with non-trivial effort

on the part of the operator and/or software) to provide a favorable

environment in which to allow the core algorithm of DSMC to evolve.

The DAC code uses a Cartesian-cut cell model in which only the cells

near to the solid geometry of any internal boundaries are modified to

align with the planar facets of the body. An example of simple meshes

∗ Corresponding author. Tel.: +1 303 2608 236.

E-mail addresses: turansky@colorado.edu (C. Turansky), brian.argrow@colorado.

edu (B. Argrow).

used by DAC and MONACO can be found in a comparison report by

Padilla [8].

The cost (both in human and computer time) of creating this

type of classical CFD mesh can become taxing. And while good

accuracy may be achieved, some elemental algorithms of DSMC

may not perform well under certain types of mesh, resulting in

undesirably costly computations. Particle tracking, for example, is

time-consuming when cells are irregularly shaped and positioned.

Tracking involves propagating simulation particles through the do-

main, colliding them with surfaces, and placing them within ap-

propriate cells so they may contribute to the macroscopic in-

terpretation of the flow. All of these operations can be difficult

and costly when classical CFD geometry models are employed in

DSMC.

An alternative to the “continuous” approach to geometry model-

ing is presented in this work that has certain advantages in simplicity,

speed and scalability. Instead of representing solid objects as consist-

ing of line and surface segments, the objects are discretized into their

raster format that is called voxelization [9–11]. This creates a “digital”

version of what is (originally) a continuous surface in the domain. All

space in the domain is then quantized. An approach of this type was

used in Bird’s original three-dimensional (3D) code F3 [3], which was

later extended to become the X2 code by Rault [12]. Though Bird’s

geometry model was briefly described as being voxelized, many re-

maining details were omitted and he makes no description of the

discrete topology that is used. In this work, voxelization details are

explained in depth with the aim of clarifying exactly how a volumet-

ric geometry model is implemented and why it can be advantageous

in DSMC.

http://dx.doi.org/10.1016/j.compfluid.2015.08.009

0045-7930/© 2015 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.compfluid.2015.08.009
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compfluid
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compfluid.2015.08.009&domain=pdf
mailto:turansky@colorado.edu
mailto:brian.argrow@colorado.edu
http://dx.doi.org/10.1016/j.compfluid.2015.08.009


C. Turansky, B. Argrow / Computers and Fluids 121 (2015) 114–132 115

Fig. 1. Example of 3D voxelization of one triangle of a sphere.

All space in the domain is considered to be composed of (usually

small) irreducible elements of space called pixels in two dimensions

(2D) or voxels in three dimensions. This concept appears mainly in

the fields of computer graphics and digital imaging. It has been con-

sidered for particle-based simulations, but mainly for visualization

only [13]. A voxelized domain is shown here to function as an accept-

able spatial model, and one that has no adverse affects on the accu-

racy of the DSMC algorithm. Section 2 provides a more detailed back-

ground on discrete geometry models and provides motivation for its

use in DSMC. Fig. 1 shows an example of a segment of rasterized 3D

geometry (a single triangle of an entire sphere). The source triangle

is embedded within its voxelized discretization, causing some voxels

to be behind/beneath the triangle.

The Voldipar (Volumetric Discrete Particle) code has been devel-

oped as a reference implementation of the volume-based geometry

method in full, as a complete program, by the first author. It is a gen-

eralized code with many common features that uses voxelized ge-

ometry. This code was previously applied to compute rarefied aero-

dynamic inputs used to simulate detailed rigid-body dynamics in

continuum-rarefied transition flow by the authors [14,15]. In the re-

mainder of this document the terms “Voldipar” or “the code” are used

to refer to this code. This work aims to demonstrate the effectiveness

of voxelized geometry and to partially verify the current state of the

Voldipar code itself.

The document begins with a description of volume-based geo-

metric methods, which includes some specific treatment of the most

salient concerns involved, and algorithms to address them. Topics

covered in Section 2 include generation of discrete geometry, discrete

ray-casting for collision-detection, volume-filling, and a set of other

minor algorithmic discussions that provide a more comprehensive

treatment of volume-based methods than has yet been seen in DSMC

literature. Section 3 compares the Voldipar code’s results to some of

the other DSMC codes’ results available to the community via com-

putation of common benchmark problems. Finally, some code perfor-

mance evaluations are performed for 3D problems.

2. Volume-based geometry

In spaces of dimension two or greater, geometry may be dis-

cretized into a volume-based representation of itself that may be

understood as a kind of analog-to-digital conversion. The core of

the volume-based geometry method is the conversion of original or

source geometry to working, discrete geometry. Note that the source

geometry itself is not literally “analog”, but rather a discrete represen-

tation of a potentially curved surface. Interaction with this discrete

geometry by simulator particles then occurs via a discrete ray-cast

operation. This section defines the basic concepts behind discretized

space models and discusses how the DSMC method may be imple-

mented using such a model.

2.1. Voxelization basics

The source geometry is converted from continuous data in the

form of points, line segments or polygons to a set of voxels. The term

voxel (Volume + x + Element) is used to refer to the smallest ele-

ment of space recognizable by the code’s geometry algorithms. In 2D,

a voxel reduces to the more-familiar term pixel, but for the sake of

conciseness, the term voxel will be used to describe both 3D and 2D

elements unless specifically denoted otherwise (e.g. “a 2D voxel”).

In general treatments, voxels may be of any size or shape, but the

overwhelming majority of applications restrict them to being d-cubes

(where d is the dimension of the space) that are all of uniform size ev-

erywhere in the domain and whose edges are parallel to the domain’s

coordinate directions. It then follows that voxels can be said to have

only a single dimension that defines their scale, termed their “size”.

The voxel size Lv is the length from one corner to any other adjacent

corner of a voxel.

Conversion of geometry is performed by a discretization algo-

rithm known as voxelization. A number of pixelization algorithms have

existed for decades, usually termed rasterization. The most famous

of these algorithms is, perhaps, the Bresenham Line Algorithm [16],

which is ubiquitous in the field of computer graphics. Voxelization

is the analogous method for 3D geometry. Voxelization has recently

begun to appear as a valid alternative to classical methods of rep-

resenting and rendering computer graphics; mostly for video games

and medical imaging [17]. In these contexts, however, the topologi-

cal properties of the discrete, vox elized geometry is usually of little

concern. Instead, the overall visual appeal of the resulting imagery is

prioritized as both games and medical imaging are concerned with

providing the best visually appealing or informative experience to a

human viewer. This means that voxelizations in these applications

may often be incomplete or inaccurate in some sense since they rep-

resent the final goal of whatever software is creating them, rather

than an intermediate construction upon which further computations

rely.



Download	English	Version:

https://daneshyari.com/en/article/761304

Download	Persian	Version:

https://daneshyari.com/article/761304

Daneshyari.com

https://daneshyari.com/en/article/761304
https://daneshyari.com/article/761304
https://daneshyari.com/

