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a b s t r a c t

The ability to estimate various sources of numerical error and to adaptively control them is a powerful tool

in quantifying uncertainty in predictive simulations. This work attempts to develop reliable estimates of nu-

merical errors resulting from spatial, temporal and stochastic approximations of fluid dynamic equations

using a discrete adjoint approach. Each source of error is isolated and the accuracy of the error estimation

is verified. When applied to unsteady flow simulations of vertical axis wind turbines (VAWT), the procedure

demonstrates good recovery of discretization errors to provide accurate estimate of the objective functional.

The framework is then applied to a VAWT simulation with inherent stochasticity and is confirmed to effec-

tively estimate errors in computing statistical quantities of interest. The ability to use these stochastic error

estimates as a basis for adaptive sampling is also presented. Predictive science is typically constrained by fi-

nite computational resources and this work demonstrates the viability of adjoint-based approaches to budget

available computational resources to effectively pursue uncertainty quantification.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Predictive simulations are increasingly being employed in scien-

tific applications and effective use of these tools is a balancing act be-

tween available computational resources and the desired numerical

accuracy. For the computations to be of value, it is critical to ensure

that numerical errors are below a threshold such that the results of

the simulation can be confidently used in analysis and design. An es-

timate of various sources of numerical error cannot only provide a

powerful tool in formal verification of the computational simulation,

but also help in budgeting the available resources towards minimiz-

ing these errors.

Approaches to quantifying numerical error in the context of finite

elements have been pursued for the past two decades [1–3], primar-

ily with the objective of providing an indicator of the local contribu-

tion to the functional error. Pierce and Giles [4] presented a generic

framework applicable to finite element/volume/difference based dis-

cretizations, that demonstrated super-convergent functional esti-

mates by adding a correction term based on the adjoint (or a dual)
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of the original governing equations. Venditti and Darmofal [5] pro-

posed an algebraic equivalent of the Pierce and Giles [4] approach.

Their approach utilizes the discrete adjoint equations and the func-

tional error on the baseline mesh is improved by computing an esti-

mate of the functional on a refined mesh. More recently, several re-

search works have used similar approaches for error estimation and

control in finite volume framework [6,7]. A comprehensive literature

review on output-based error estimation is provided by Fidkowski

and Darmofal [8]. The current work pursues the approach of Venditti

and Darmofal [5] because the discrete formulation allows for a nat-

ural extension to account for temporal and stochastic errors. In the

past, the current authors have employed adjoint methods in the ar-

eas of error-estimation/control [9,10] and uncertainty quantification

[10–13].

Many unsteady fluid and aerodynamic problems can be approx-

imated using the assumption of periodicity in time. In solving such

periodic problems, the time-spectral method [14,15] has proved to

be highly efficient. The basic idea of the time-spectral method is to

have a Fourier representation of the time-derivative term of the un-

steady flow equation to take advantage of periodicity in time. When

transformed back to the physical domain, the time derivative term

appears as a high-order finite difference formula coupling all the

time levels. The solution can then be obtained by marching towards a

steady-state in an auxiliary pseudo-time variable. The time-spectral

method is similar in spirit to the frequency-domain method (e.g. Hall

et al. [16]), but is different in the sense that the computations are
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performed directly in the time domain instead of the frequency do-

main. One of the major advantages of the time-spectral method is

that it makes the adjoint method more affordable in unsteady flow

simulations as the requirement of saving and working on the solu-

tion at every time-step can be avoided.

In this work a vertical axis wind turbine (VAWT) problem, that

has periodic behavior in time is pursued as a sample application.

The highly unsteady nature of the flow-field seen in these calcula-

tions present many challenges to spatial and temporal approxima-

tions. Further, wind turbine simulations are subject to a range of

uncertainties, arising either from natural variabilities present in the

system such as the physical variation in wind speed and free stream

turbulence. Quantifying the impact of such uncertainties can improve

the computational predictions and can aid in the design of cost-

effective wind turbines. In addition, in many engineering applica-

tions, one is typically interested in statistical moments like the mean

and variance of some functional (e.g. power generated by the wind

turbine) in the stochastic space. For reliability, it is necessary to en-

sure that the numerical error in calculating these statistical moments

are estimated and controlled.

Duraisamy and Chandrashekar [12] proposed a framework based

on the use of adjoint equations to formulate an adaptive sam-

pling strategy for uncertainty quantification for problems gov-

erned by algebraic or differential equations involving random pa-

rameters. The approach makes use of discrete sampling based on

collocation on simplex elements [17] in stochastic space. Errors

resulting from inexact reconstruction of the solution within the

simplex elements are estimated. This framework is adopted in the

present work and is extended to highly unsteady and non-linear

problems.

The primary objective of this paper is to carefully evaluate the

aforementioned adjoint-based error estimation strategies in spa-

tial, temporal and stochastic approximations in practical aerody-

namic applications. The main problem considered is a vertical axis

wind turbine case. This setup is chosen as it can be simulated in

two spatial dimensions, thus allowing for a feasible problem but

without oversimplifying the flow-field. The following sections con-

tain the formulations required for calculation of each component of

the error estimates, implementation details and results showing the

benefits of such estimates to help budget computational resources

as well as to provide a basis for adaptive sampling in stochastic

space.

2. Governing equations of fluid flow

Let �s ⊂ R
3 denote the fluid domain of interest and �hs

its dis-

cretization with Nx, Ny and Nz partitions in the three spatial direc-

tions x, y and z, respectively. The Navier–Stokes equations in a semi-

discrete form can be written as

∂U(�x, t)

∂t
+ R̂(U(�x, t)) = 0, �x ∈ �hs

(1)

where U(�x, t) represents the approximation of the state vector of

unknowns in the semi-discrete space and R̂(U(�x, t)) is the resid-

ual of spatial discretization of inviscid and viscous fluxes includ-

ing the grid velocity terms to account for mesh motion. For prob-

lems that are periodic in time, the Time Spectral method [14] can

be employed as an efficient alternative to traditional time march-

ing methods. In this approach, a Fourier representation is utilized in

the time domain, �t. If the time period T is divided into Nt time in-

tervals, the time derivative term can be written as a matrix-vector

product, Dt U(�r). U(�r) denotes the discrete representation of the

state vector of unknowns containing the solution state at all Nt time

instances and �r ∈ �hs
∪ �ht

, where �ht
is the discrete representa-

tion of �t. Dt is a matrix whose elements for odd and even Nt’s

are given in Ref. [14].

dodd
i j =

⎧⎨
⎩

π
T
( − 1)l− jcosec

(
π(l − j)

Nt

)
: l �= j

0 : l = j

(2)

deven
i j =

⎧⎨
⎩

π
T
( − 1)l− jcot

(
π(l − j)

Nt

)
: l �= j

0 : l = j

. (3)

The governing equation can now be written as

Dt U(�r) + R̂(U(�r)) = 0. (4)

Combining the time derivative term with the residual term, the sys-

tem of discrete equations can be written in a compact form as

R(U(�r)) = 0. (5)

The above governing equation in the presence of random parameters
�ξ can be written as

R(U(�r, �ξ)) = 0, �ξ ∈ �hξ
, (6)

where �hξ
is the discrete representation of the stochastic space,

�ξ ⊂ R
nξ , nξ is the number of stochastic variables. �hξ

can be dis-

cretized into NE simplex elements consisting of NS vertices.

2.1. Flow solution procedure

In the current work, the spatial discretization is evaluated using a

cell-centered finite volume formulation on structured grids. The in-

viscid Euler fluxes are discretized using third-order MUSCL scheme

[18] in combination with the approximate Riemann solver of Roe

[19]. The Non-oscillatory behavior of the MUSCL reconstruction is en-

forced by applying a slope limiter due to Koren [20].

The system of discrete equations in Eq. 5 is solved iteratively to a

pseudo-steady state solution using dual-time stepping [21,22] in the

form

∂U

∂τ
+ R(U) = 0, (7)

where, τ is the dual-time step. In the above equation, U(�r) is written

as U for simplicity. Implicit operators are constructed using the diag-

onalized alternating direction implicit (D-ADI) scheme [23]. The tra-

ditional D-ADI scheme only treats the spatial derivative terms implic-

itly and was found to converge slowly in the presence of time-spectral

source terms. Therefore, a sub-iteration type algorithm is employed,

where the updates are performed to Eq. 4 as

Uk+1 − Uk

�τ
= Dt Uk + R̂(Uk+1) + Uk − Un

�τ
, k = 1, 2, . . . , s. (8)

Here, n is the iteration index and k is the sub-iteration index such

that Uk
∣∣

k=1
= Un and Un+1 = Uk

∣∣
k=s+1

. Each of these updates are

performed using the traditional D-ADI scheme. Two or three sub-

iterations are found to be sufficient to improve the convergence

of the simulations presented in this paper. Note that �τ can vary

spatially.

3. Discrete adjoint equations

For purposes of functional error estimation, a discrete adjoint

[24–27] approach is pursued. In this approach, a numerically exact

adjoint is derived from the discretized form of the primal (flow) equa-

tions. This is in contrast to the continuous adjoint approach [28–30]

in which the adjoint of the primal problem is derived from the con-

tinous primal equations and then discretized. It could be argued that

the discrete adjoint might be naturally suited for purposes of error es-

timation because of the exact nature of the solution of the discrete ad-

joint equations (to machine precision) and also because the discrete
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