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a b s t r a c t

A stabilized finite element formulation of the level set equation is proposed for the numerical simulation of

water droplet dynamics for in-flight ice accretion problems. The variational multi-scale and Taylor–Galerkin

approaches are coupled such that the temporal derivative in the weak Galerkin formulation is replaced with

a Taylor series expansion improving the temporal accuracy of the scheme. The variational multi-scale ap-

proach is then applied to the semi-discrete equation, allowing the stabilization terms to appear naturally.

Taylor series expansions up to the fourth order have been studied in terms of accuracy and convergence

rates. A second order implicit expansion was found to provide a good trade-off between accuracy and com-

putational cost when compared to a fourth order implicit expansion. Validation is done through a number

of benchmark cases considering droplet stretching and high-speed advection. Results indicate good mass

conservation characteristics compared to other methods available in the literature.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Understanding and modeling the impingement dynamics of su-

percooled large droplets (SLDs) is crucial to be able to address accu-

rately the mechanism of in-flight icing on aircraft and rotorcraft. This

has become critical after the introduction of the new Appendix O for

certification [1]. SLD are droplets of diameters greater than 50 μm

which are found in the atmosphere in liquid state at temperatures

below the freezing point as a consequence of the surface tension

[1]. While small droplets are generally assumed to retain a nearly

spherical shape even under substantial aerodynamic stresses, this is

not true for SLD, especially at speeds typical of aerospace applica-

tions. In these conditions, droplets undergo great deformations and

the phenomenology of the impact with aircraft surfaces is fairly com-

plex. Aerodynamic distortion, break-up before impact, splashing and

bouncing are phenomena that have to be taken into consideration

when studying SLD dynamics. These phenomena could lead to water

deposition over areas that would have remained dry in the case of

the impact of smaller droplets. Failing to take the SLD behavior into

account when designing ice protection systems may lead to the for-

mation of ice on unprotected surfaces—a safety disaster.

The problem of SLD dynamics can be investigated either ex-

perimentally or numerically. Studying SLD experimentally in icing
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tunnels is not straightforward due to technical limitations that can

affect the efficacy of the study. Atmospheric droplet distributions

can be very difficult to reproduce, particularly those proposed in

the new certification regulations. Replicating the flow conditions

experienced in an in-flight icing scenario is also a challenging and

expensive task, especially when scaling is involved [2]. Accurate

surface impingement data are also nearly impossible to obtain in a

non-invasive manner. Numerical methods, on the other hand, are

capable of reproducing the flow conditions without the need for

scaling and therefore can be considered as a valid instrument for this

type of studies. A major challenge to numerical modeling of SLD is

the ability to address the evolution of the surface of the droplets due

to the aerodynamic shear that makes it highly irregular and prone

to folding, pinching, merging and eventually break up. Large droplets

impacting a surface at high speed can shatter and produce sprays of

smaller droplets that re-enter the flow and deposit further down-

stream, by-passing the ice protection system [32,33]. Many reports

can be found in the literature that propose numerical approaches to

address the dynamics of droplets in in-flight icing. Nevertheless the

majority of these methods make use of heuristic correlations based

on single or multiple droplet experiments, or simplified analytical

approaches that do not consider the SLD regime explicitly, or extrap-

olate the SLD behavior from non-SLD/non-aeronautical conditions

and eventually may fail to provide accurate predictions [3,4]. Better

insight in SLD dynamics could be obtained by considering numerical

approaches to consistently study the detailed surface dynamics and

evolution of a single and/or multiple SLD to remove some of the
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empiricism currently adopted in macroscopic analyses of droplet

impact.

Single-droplet dynamics can be modeled with a Lagrangian,

Eulerian, or mixed Eulerian–Lagrangian approach [5]. In a Lagrangian

approach (also referred to as interface tracking), the grid coincides

with the interface and tracking is explicitly accomplished by moving

the grid points along with the interface. This method is generally

accurate for cases involving small interface motion, but it is not

effective when large deformations occur [5]. Lagrangian methods are

usually computationally expensive due to the costs associated with a

mesh that has to conform to the new interface location at every time

step. In the mixed Eulerian–Lagrangian approach, the computations

are done on a fixed Eulerian grid with marker points are used to

define precisely the interface. These marker points are then used to

guide and correct the interface location providing improved accuracy

compared to a pure Eulerian approach. The major drawback of this

approach is the difficulty associated with the tracking of the marker

points when large deformations and topological changes occur,

such as the merging of two droplets or the creation of non-simply

connected regions [5]. The computational cost of mixed methods is

reduced with respect to the Lagrangian approach, but still remains

very high, especially when many markers are needed to accurately

represent the interface. Lagrangian and mixed methods enjoy fa-

vorable properties when it comes to mass conservation since the

tracking of the interface prevents any mass loss or gain, but their

computational cost makes these methods unattractive. The Eulerian

approach (also referred to as interface capturing) captures the inter-

face on a fixed grid through a scalar function containing the interface

information. The temporal and spatial evolution of the interface is

updated by solving a transport equation. The Eulerian method offers:

a greatly reduced computational cost and the possibility to define a

consistent and unified numerical method that accounts simultane-

ously and accurately for the interaction between the different phases

by resorting to mesh adaptation techniques. Despite the problems

related to numerical stability and mass conservation, the Eulerian

approach is recognized as a good candidate to address problems that

involve the large deformation and topology changes of SLD dynamics.

The two most commonly adopted Eulerian methods are the level

set method (LSM) [6,7] and the volume of fluid (VOF) method [8,9].

Both methods use the same advection equation but differ in the scalar

function adopted for the advection problem. The LSM uses a signed

distance function while the VOF method uses the volume fraction.

The LSM, introduced by Osher and Sethian [10], provides an efficient

and simple approach for modeling interface motion. Unlike the VOF

method where the interface is reconstructed using volume fractions,

the LSM provides a continuous interface representation allowing for

the accurate account of the surface tension forces. Computing the sur-

face normal and curvature is also straightforward due to the use of a

signed distance function. These features make the LSM an attractive

choice for modeling high-speed droplet impingement.

The LSM uses an implicit representation of the interface through

the zero level set (LS) of a signed distance function. This function is

evolved in time using a transport equation [6,11]. In the present work,

a finite element (FE) implementation of the LSM was chosen due to

its favorable numerical characteristics. These include the superior ac-

curacy of the solution, the rigorous treatment of the boundary con-

ditions, and the ability to handle anisotropic meshes with ease. The

FE implementation of the LSM, however suffers from spurious oscil-

lations for advection-dominated problems, which become even more

noticeable in the case of the high speed flows typical of aeronautical

applications. Stabilization techniques either introduce artificial diffu-

sion, or an upwind discretization of the convection term. The addition

of artificial diffusion offsets the negative diffusion introduced by the

weak-Galerkin formulation, stabilizing the method, while the upwind

formulation avoids the problems typical of the central difference ap-

proximation arising from the standard weak-Galerkin formulation

[12]. Various FE implementations of the LSM have been published in

the literature and some of the most relevant work will be outlined.

Nagrath et al. [13] introduced a streamline-upwind/Petrov–Galerkin

(SUPG) stabilized FE LSM for incompressible two-phase flows, which

was used to model a bubble rising in a liquid. Valance et al. [14]

developed a Galerkin least-squares stabilized Bubnov–Galerkin for-

mulation for the LSM for applications involving irregular domains

and discontinuities. Cho et al. [15] developed a direct re-initialization

scheme for a Taylor–Galerkin (TG) stabilized FE-LSM for incompress-

ible two-phase flows. The method was subsequently refined to in-

clude flows with surface tension [16]. Farthing and Kees [17] intro-

duced two different stabilization methods for the LS equation. The

first employed a Runge–Kutta Discontinuous Galerkin method. It was

shown that, in some circumstances, this lead to entropy-violating so-

lutions which are overcome by the addition of shock-capturing diffu-

sion and viscous stabilization. The second approach employed a vari-

ational multi-scale (VMS) continuous Galerkin formulation, which

was also found to provide inaccurate results for some test cases [17]

and required the introduction of isentropic shock capturing terms.

Kees et al. [18] later improved the mass conservation of the schemes

by coupling them with the volume fraction equation.

In this paper, stabilization of the FE-LSM through VMS is further

investigated. A hybrid TG-VMS approach is proposed in the attempt

to enhance stabilization through the introduction of a Taylor series

expansion for the temporal term. Temporal accuracy will also be im-

proved with a higher-order temporal discretization, while the VMS

approach will introduce the stabilization terms naturally. The outline

of the paper is as follows: Section 2 introduces the equations to be

modeled, Section 3 introduces the hybrid approach applied to the LS

equation, Section 4 presents the numerical results and Section 5 con-

tains the conclusions.

2. Mathematical model

In the LSM, the interface is represented by the zero LS of a scalar

function ϕ. The signed distance function is the most commonly used

and it is defined as the minimum distance between a grid node and

the interface. The scalar distance function ϕ is then advected accord-

ing to the following partial differential equation (PDE):

ϕt + û · ∇ϕ = 0 (1)

where û is the interface advection velocity, and ϕ is the signed dis-

tance function. By virtue of Eq. (1), the second order temporal deriva-

tive of the LS equation can be written as:

ϕtt = −ut · ∇ϕ + (û · ∇(û · ∇ϕ)) (2)

where û and ut are, respectively, the average advection velocity and

its first order temporal derivative, which are given by:

û = un+1 + un

2
and ut = un+1 − un

�t
(3)

where �t is the time step used. The surface normal n and curvature k

of the interface can be calculated using:

n = ∇ϕ

‖∇ϕ‖ (4)

k = ∇ · n = ∇ · ∇ϕ

‖∇ϕ‖ (5)

When using a signed distance function, the L2-norm of the gradient

of the scalar function ϕ is equal to unity, simplifying Eqs. (4) and (5).

However as Eq. (1) advects the interface with time, the function ϕ will

drift from being a signed distance function and may become irregu-

lar [7]. This is because the velocity field will not necessarily trans-

port all LSs with the same velocity [19]. This can lead to incorrect

motion of the interface and may result in additional mass loss [20].
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