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a  b  s  t  r  a  c  t

In this  work,  a method-of-moments  formulation  has  been  presented  for  estimating  the  dispersion  of  ana-
lyte  streams  as  they  migrate  through  a free-flow  zone  electrophoresis  (FFZE)  channel  under  laminar  flow
conditions. The  current  analysis  considers  parallel-plate  based  FFZE  systems  with  an applied  pressure-
gradient  along  the  channel  length  for sample  and  carrier  electrolyte  transport,  and  an  external  electric
field  in  the  transverse  direction  for enabling  the  electrophoretic  separation.  A closed-form  expression
has  been  derived  using  this  mathematical  approach  for describing  the spatial  variance  of  sample  streams
as a function  of their  position  in  the  separation  chamber  at steady  state.  This  expression  predicts  that
the  hydrodynamic  dispersion  component  in an  FFZE  assay  scales  as Pe2

x where  Pex denotes  the  Péclet
number  based  on the  analyte’s  transverse  electrophoretic  migration  velocity  rather  than  its  longitudinal
pressure-driven  flow  speed  as  expected  in  transport  processes  induced  by  a pressure-gradient.  Interest-
ingly  however,  the  coefficient  multiplying  this  dimensionless  group,  i.e.,  1/210,  is identically  equal  to
the  constant  preceding  the  square  of  the  relevant  Péclet  number  in  the  latter  case  (i.e.,  Péclet  number
based  on  the  longitudinal  flow  speed).  It  must  be noted  that  while  the mathematical  analysis  reported  in
this work  is only  valid  for FFZE  systems  in  the absence  of  any  unwanted  Joule  heating,  pressure-driven
cross-flow  and/or  differences  in  the  electrical  conductivity  between  the  sample  and  carrier  electrolyte,
it  can  also  be applied  to numerically  estimate  the effect  of  these  factors  on  the  separation  resolution  of
the  assay.

© 2014  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Free-flow zone electrophoresis (FFZE) is an important liquid
phase separation method that allows for continuous fractionation
of charged species based on their electrophoretic mobilities in the
system [1,2]. This technique has been successfully applied to a wide
variety of samples ranging from small metabolites to large bio-
logical cells owing to its high throughput of the analyte species
and reliance on relatively gentle operating conditions [3,4]. More
recently, the FFZE assay has been integrated to other analytical
procedures on the microfluidic platform significantly improving its
ability to analyze complex mixtures [5–8]. The miniaturization of
FFZE separations to micrometer sized compartments has further
enhanced the performance of this assay by reducing Joule heating
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effects, allowing the injection of narrow sample streams as well as
minimizing the hydrodynamic dispersion of analyte zones [9–11].

The FFZE technique is commonly practiced by continuously
introducing a sample mixture into the separation channel along
with a co-current flow of a carrier electrolyte using pressure-drive
[12–18]. These liquid streams are subjected to a transverse electric
field as they travel through the system in order to then deflect the
constituent analytes in the sample away from the direction of the
pressure-driven transport. Consequently, analyte zones that exit
the separation channel at different lateral positions are formed
enabling the desired fractionation. As with any other separation
method, the widths of these analyte zones broaden during their
passage through the FFZE channel [19–22]. Such broadening inher-
ently occurs due to molecular diffusion orthogonal to the flow
direction of the analyte zone as well as the parabolic shape of the
pressure-driven velocity field across the channel depth [23–27].
In addition, non-idealities such as Joule heating, differences in the
electrical conductivity between the sample and carrier electrolyte
(electromigration dispersion) and/or pressure-driven cross-flow
arising from complete/partial blockage of electroosmotic trans-
port by the channel side-walls (electrodynamic distortion) [28–30]
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further aggravate this process deteriorating the resolving power
of the assay [2,31]. While the contribution to stream broaden-
ing due to molecular diffusion orthogonal to the flow direction is
relatively simple to estimate, the hydrodynamic dispersion com-
ponent and those arising from the non-idealities in the system
rely on a complex interplay between the local streamline velocity
and analyte diffusion across these streamlines [23–27]. Unfortu-
nately, no rigorous theoretical approaches currently exist in the
literature that can quantitatively describe the latter kinds of dis-
persion phenomena, although some simplified analyses of these
processes have been reported previously based on the moving
boundary theory [32–34]. In this article, we attempt to fill such a
gap in knowledge by presenting a mathematical formulation of the
stream dispersion problem in FFZE assays based on the method-
of-moments approach. The reported formulation has been later
applied to derive a closed-form expression for the steady state spa-
tial variance of analyte zones as a function of their location in an
FFZE channel in the absence of any non-idealities in the system. This
expression predicts that the hydrodynamic dispersion component
in an FFZE assay scales as Pe2

x where Pex denotes the Péclet num-
ber based on the analyte’s transverse electrophoretic migration
velocity rather than its longitudinal pressure-driven flow speed as
expected in transport processes induced by a pressure-gradient.
Interestingly however, the coefficient multiplying this dimension-
less group, i.e., 1/210, is identically equal to the constant preceding
the square of the relevant Péclet number in the latter case (i.e.,
Péclet number based on the longitudinal flow speed) [35]. It is
important to point out that while the current analysis ignores the
effects of various non-idealities such as Joule heating, pressure-
driven flow across the channel width and/or differences in the
electrical conductivity between the sample and carrier electrolyte,
the method-of-moments approach outlined in this work can also
be applied to numerically estimate the influence of these unwanted
factors on the separation performance of the assay.

2. Mathematical formulation

To evaluate sample dispersion in an FFZE system, we consider
the flow of an analyte stream between two parallel plates separated
by a distance d (see Fig. 1) under the influence of a pressure-driven
flow in the axial direction (along the z-coordinate) and an electric
field (E) applied across the width of the separation chamber (along
the x-coordinate). In order to simplify our mathematical analysis,
we assume the locations of the parallel plates to be y = ± d/2 yielding
a pressure-driven velocity profile up = (3Ū/2)(1 − (4y2/d2)) with
Ū being the spatially averaged value of up. The advection–diffusion
equation governing the concentration of the sample species (C) in
this situation may  be written as
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where � and D refer to the net electrokinetic mobility (alge-
braic sum of the electrophoretic and electroosmotic mobilities) and
diffusion coefficient of the analyte molecules, respectively. Upon
normalizing all length scales with respect to d, i.e., x*, y*, z* = x/d,
y/d, z/d, and the sample concentration by its inlet value (C0), i.e.,
C* = C/C0, Eq. (1) may  be reduced to the dimensionless form
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The quantities Pex = �Ed/D and Pez = Ūd/D here denote the
Péclet numbers in the x and z-directions, respectively, yielding
measures of advective transport relative to diffusion along the
width and length of the separation compartment. The analyte con-
centration in this system is subjected to the boundary conditions

Fig. 1. (a) Schematic of the FFZE fractionation process between two parallel-plates
as  described in this article. (b) Top view of a microfluidic FFZE device relevant to the
mathematical analysis presented in this work.

∂C*/∂y* = 0 at y* = ±1/2, C*, ∂C*/∂x* = 0 as x*→ ± ∞ and C* = 1 at z* = 0,
−b/2d ≤ x* ≤ b/2d where b denotes the width of the sample stream
at the inlet location (z* = 0). In addition to these constraints, the
amount of analyte flowing per unit time through any x − y plane is
a constant in the system and equals its value at the inlet of the sep-
aration chamber. Mathematically, this condition may be expressed

as
∫ 1/2

−1/2

∫ ∞
−∞(1 − 4y∗2)C∗dx∗dy∗ = 2b/3d = 2ı/3. Now multiplying

Eq. (2) with x*p followed by integrating it along the x*-coordinate
from −∞ to ∞,  it is possible to show that [35]
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where �p =
∫ ∞

−∞ x∗pC∗dx∗. Further integrating Eq. (3) along the
y*-coordinate over the region between the parallel plates and defin-

ing mp =
∫ 1/2

−1/2
�pdy∗ one can obtain
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with m0|z∗=0 = ı, m1|z∗=0 = 0 and m2|z∗=0 = ı3/12. Notice that
the quantity mp in this formulation represents the pth moment of C*
in any x − y plane with m1 representing the normalized x*-position
of the center of mass for the analyte stream and the quantity
m2/m0 − m2

1/m2
0 equaling its normalized spatial variance along the

x-axis.
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