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a b s t r a c t 

Progress toward a stable and efficient numerical treatment for the Reynolds-averaged Navier–Stokes equa- 

tions with a Reynolds-stress-transport model on unstructured grids is presented. The unconditionally sta- 

ble time marching scheme for Reynolds-stress-transport models, originally developed by the author for 

structured grids, is extended for unstructured grids using a finite volume method. The scheme guaran- 

tees the convergence of the fixed point iteration on the linearized problem. Moreover, the scheme is a 

positivity-preserving scheme, regardless of the time step. Thanks to the scheme characteristics, a spa- 

tially second-order discretization method for the Reynolds stress model equations (exactly as applied to 

the mean-flow equations) can be used, free of stability difficulties within the fixed point iterations. It 

is shown that the limiter has a dramatic influence on the convergence characteristics. Specifically, the 

limiter applied to the turbulence model variables was found to significantly influence the overall con- 

vergence behavior. Another key to the overall flow solver stability is a simple and robust procedure that 

is proposed to explicitly enforce all the realizability conditions of the Reynolds stress tensor. Two- and 

three-dimensional numerical flow simulations demonstrate the robustness of the overall flow solver for 

industrial applications. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

Since the early Reynolds averaged Navier–Stokes (RANS) turbu- 

lent flow simulations on unstructured grids, a first-order upwind 

approximation of the RANS turbulence model convective flux 

has been most widely used [1] . A few previous studies have 

successfully utilized a second- or third-order upwind biased ap- 

proximation of the convective flux of RANS turbulence models [2] 

in structured grid-based flow solvers, and even of Reynolds stress 

transport models [3] . However, the use of a second-order, or a 

higher order accuracy for the approximation the turbulence model 

equations convective flux, in an unstructured grid-based flow 

solver is very rare [4] . The rationale behind the choice of a first 

order upwind scheme is to tackle the numerical stiffness of the 

turbulence model equations. 

Surprisingly, it seems that the use of a first-order upwind 

scheme for convective flux of the RANS turbulence model equa- 

tions is the most practical stabilization technique even though it 

is well known that the numerical stiffness originates from the 

turbulence model source terms. It is the best practice, especially 
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when using unstructured grids, where the numerical difficulties 

are aggravated. That raises a question: why is a first order upwind 

scheme required to stabilize the numerical scheme even when the 

source term is treated appropriately ? An excellent analysis about 

the role of the convective flux in the stability of RANS turbulence 

models was conducted by Jongen and Marx [5] . Contrary to the 

classical understanding, they showed that the discretization of the 

convective flux is the source of most numerical difficulties. Specif- 

ically, it is the convective flux that may generate spurious oscilla- 

tions, which may in turn result in a non physical solution. Namely, 

negative values of the model working variables, that are positive 

by virtue of the underlying physics, may appear. They have man- 

aged to isolate the origin of the problem and show that it is 

the divergence term (regardless of using a conservative or a non- 

conservative form) that is responsible for the numerical stability is- 

sues. Moreover, Jongen and Marx warn from the erroneous thought 

that the deferred correction approach, in which a combination of a 

first-order upwind approximation of the implicit term with a high- 

order TVD approximation of the residual (explicit) term, is TVD 

and hence a stable scheme can be obtained. 

Generally, despite the mismatch between the explicit and 

implicit parts, the resulting time integration scheme, when ap- 

plied to the mean flow equations, is very robust. However, this 

is not the case when a source term is involved, e.g. , when RANS 
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turbulence model equations are considered. The convective flux is 

a linear operator with regards to the turbulence model working 

variables. However, for high-order schemes, certain nonlinearity 

is introduced into the discrete approximation ( e.g. , a limiter in 

the widely used MUSCL schemes, or nonlinear weights in WENO 

schemes) in an attempt to control spurious oscillations in the 

solution. These nonlinear terms may vary significantly between 

neighboring cells due to the local nature of the turbulence model 

source term. This may especially be dramatic in the transition 

phase of the simulation through convergence where large errors 

and sharp interfaces between turbulent and non-turbulent regions 

exist. Therefore, the deferred correction approach may lead to 

a great mismatch between the explicit and implicit operators. 

Consequently, the deferred correction approach may results in 

severe numerical instability difficulties and most likely in a loss 

of positivity. This mismatch becomes even more severe when 

using unstructured grids. On structured grids, the stencil of the 

discrete convective flux involves cells that lie on a line which is 

perpendicular to the surface control volume face. For example, a 

third-order upwind biased scheme involves only three cells (on 

both sides of the face). While for an unstructured grid based flow 

solver, the discrete convective flux stencil involves more cells, 

hence a greater mismatch is present. 

The present study focuses on designing a robust, implicit time 

marching scheme for the compressible Favre–Reynolds-averaged 

Navier–Stokes equations with RANS turbulence models on un- 

structured grids. Specifically, the motivation is to design a robust 

scheme for Reynolds stress transport models. Among RANS turbu- 

lence models, Reynolds-stress-transport models (RSTM), represent- 

ing more elaborate physics, are perceived as the most advanced 

ones and are indeed regarded as the most stiff models. 

To date, in most studies involving RSTM, the convergence that 

was presented was far from optimal. Moreover, the very few that 

presented convergence plots seldom meet the acceptable standards 

of convergence as with two-equation turbulence models. Chassain 

et al. [3] warrants that sometimes the insufficient convergence ob- 

served with RSTM is misinterpreted as a result of flow instability, 

when in fact it may be related to numerical instabilities. There- 

fore, there is a clear need for progress in developing convergent 

methods for RSTM, and by that to obtain reliable numerical solu- 

tions. Recently, significant progress was achieved in the design of a 

robust scheme for Reynolds stress transport models using a third- 

order upwind biased approximation on structured grids [6] . The 

scheme is based on the extension of the unconditionally positive- 

convergent implicit scheme (UPC), originally developed for two- 

equations turbulence models [7] . In contrast to the common de- 

ferred correction approach, the implicit operator within the UPC 

scheme is constructed directly from the discrete high-order explicit 

operator, namely there is no mismatch between the implicit and 

explicit operators. The present work describe the extension of the 

scheme presented in Ref. [6] to unstructured grids. Additionally, a 

stability analysis of the convective and diffusive fluxes of a RANS 

turbulence model is presented. 

2. Governing equations 

The governing equations are obtained by Favre–Reynolds av- 

eraging the Navier–Stokes equations (RANS) and modeling the 

Reynolds stress. The unknown, Reynolds stress tensor is modeled 

in this work via the SSG / LRR - ω Reynolds stress transport model de- 

veloped by Eisfeld [8] . Note that the latest version of the model [9] 

is implemented herein. In the proceeding equations, the symbol ( ̄) 
indicates non-weighted averaging, the symbol ( ∼) signifies Favre 

averaging, and the symbol ( ′ ′ ) denotes Favre fluctuations. 

2.1. Mean-flow equations 

In a compact vector form, the mean-flow equations may be ex- 

pressed in Cartesian coordinates as follows: 

∂ Q 

∂τ
+ 

∂( E 

c − E 

d ) 

∂x 
+ 

∂( F c − F d ) 

∂y 
+ 

∂( G 

c − G 

d ) 

∂z 
= 0 (1) 

where τ denotes the time and x i = [ x, y, z ] denote the Cartesian 

coordinates. The vector Q denotes the mean-flow dependent vari- 

ables given as: 

Q = 

[
ρ̄, ρ̄˜ u , ρ̄˜ v , ρ̄˜ w , ˜ E 

]T 
(2) 

The fluid density is denoted by ρ , the Cartesian velocity vector 

components are denoted by u, v , and w , and the total energy is 

denoted by E . The mean-flow inviscid fluxes are given by 

E 

c = 

⎡ ⎢ ⎢ ⎣ 

ρ̄˜ u 

ρ̄˜ u ̃

 u + p̄ 
ρ̄˜ v ̃  u 

ρ̄˜ w ̃

 u 

( ̃  E + p̄ ) ̃  u 

⎤ ⎥ ⎥ ⎦ 

, F c = 

⎡ ⎢ ⎢ ⎣ 

ρ̄˜ v 
ρ̄˜ u ̃

 v 
ρ̄˜ v ̃  v + p̄ 
ρ̄˜ w ̃

 v 
( ̃  E + p̄ ) ̃  v 

⎤ ⎥ ⎥ ⎦ 

, G 

c = 

⎡ ⎢ ⎢ ⎣ 

ρ̄˜ w 

ρ̄˜ u ̃

 w 

ρ̄˜ v ̃  w 

ρ̄˜ w ̃

 w + p̄ 

( ̃  E + p̄ ) ̃  w 

⎤ ⎥ ⎥ ⎦ 

(3) 

where p denotes the pressure. The mean-flow diffusive flux vectors 

are given by 

E 

d = 

⎡ ⎢ ⎢ ⎣ 

0 

τ̄xx − ρ̄˜ R xx 

τ̄xy − ρ̄˜ R xy 

τ̄xz − ρ̄˜ R xz 

βx 

⎤ ⎥ ⎥ ⎦ 

, F d = 

⎡ ⎢ ⎢ ⎣ 

0 

τ̄xy − ρ̄˜ R xy 

τ̄yy − ρ̄˜ R yy 

τ̄yz − ρ̄˜ R yz 

βy 

⎤ ⎥ ⎥ ⎦ 

, G 

d = 

⎡ ⎢ ⎢ ⎣ 

0 

τ̄xz − ρ̄˜ R xz 

τ̄yz − ρ̄˜ R yz 

τ̄zz − ρ̄˜ R zz 

βz 

⎤ ⎥ ⎥ ⎦ 

(4) 

where τ̄x i x j and 

˜ R x i x j = 

˜ u ′′ 
i 

u ′′ 
j 

are the components of the viscous 

stress and Reynolds-stress tensors, respectively. The terms βx i are 

given by: 

βx i = 

˜ u ( ̄τx i x − ρ̄˜ R x i x ) + ̃

 v ( ̄τx i y − ρ̄˜ R x i y ) 

+ ̃

 w ( ̄τx i z − ρ̄˜ R x i z ) − q̄ x i − ( ̄q t ) x i (5) 

where q̄ x i and ( ̄q t ) x i are the molecular and turbulent heat flux, re- 

spectively, modeled using Fourier’s law: 

q̄ x i = −κ̄ T̄ ,x i (6) 

( ̄q t ) x i = −κ̄t ̄T ,x i (7) 

with T denoting the temperature and κ̄ = c p ̄μ/P r and κ̄t = c p ̄μt P r t 
are the molecular and turbulent heat conductivities, respectively. 

The term μ̄ denotes the molecular viscosity, calculated using 

Sutherland’s law. The term μt denotes the turbulent viscosity, 

whereas for the SSG / LRR - ω RSTM it is calculated as μt = ρk/ω. 

With k = 

1 
2 ̃

 R x i x i being the turbulent kinetic energy, and ω is the 

specific turbulent dissipation rate. The term c p is the specific heat 

capacity at constant pressure while P r = 0 . 72 and P r t = 0 . 9 are the 

molecular and turbulent Prandtl numbers, respectively. The mean- 

flow equations are closed using the equation of state for a perfect 

gas, given by: 

p̄ = ( γ − 1 ) 

[ 
˜ E − 1 

2 

ρ̄
(

˜ u 

2 + ̃

 v 2 + 

˜ w 

2 
)] 

(8) 

where γ is the ratio of specific heats ( c p / c v ), set to γ = 1.4. Note 

that the contribution of the turbulent diffusion to the total energy 

transport equation is neglected, as well as the contribution of the 

turbulent kinetic energy to the total energy. 
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