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a b s t r a c t 

A new method of spatial filtering in high-order finite volume methods is presented and assessed. The 

base of this method is to filter face-averaged variables (fluxes) and then the recovery of cell-averaged 

ones. Two kinds of filtering method are proposed. The first kind is highly dissipative and appropriate 

for the numerical regions that need high dissipation, e.g. sponge zones. The second kind, on the other 

hand, is a precise method and hence is suitable for applying the high -order finite difference filters to 

the finite volume methods. Applying high -order finite difference filters directly to the high -order finite 

volume methods without using the proposed method causes stability problems in the large eddy simu- 

lation of high Reynolds number flows. The test cases, namely, propagation of the one-dimensional wave 

packet, advection of a two-dimensional vortical wave and the large eddy simulation of turbulent round 

jet at Re = 10 4 and 10 5 are used to examine the accuracy and performance of the proposed methods. The 

last test case shows the effectiveness of the proposed methods in the large eddy simulation of flows by 

high -order FVMs. The performance of filtering methods on a curvilinear wavy grid is also investigated. 

© 2016 Published by Elsevier Ltd. 

1. Introduction 

Spatial filtering is frequently used in the high-order and 

high-resolution numerical methods aiming at computational aero- 

acoustics (CAA), direct numerical simulation (DNS), and large eddy 

simulation (LES). The high wave number oscillations associated to 

the scales near the grid size can lead to the stability problem in 

such simulations. These waves generated from the physical or nu- 

merical sources are then removed by applying the numerical filters 

[1–6] . These filters are moreover suitable for explicit filtering of the 

flow variables in the large eddy simulation [7–13] and regulariza- 

tion modeling [14,15] of turbulent flows. The governing equations 

of such a simulation do not include the scales finer than the grid 

size and therefore these scales should be removed from the nu- 

merical solution at each time step. Primitive large eddy simulations 

are performed without any explicit filter by supposing that the 

finite computational mesh and discrete derivative operators have 

low-pass filtering effects. However, since this inherent filter acts 

only in one spatial direction in which the derivative is taken and 

it has uncontrolled dissipation [11] , the later simulations use ex- 

plicit filtering by applying the known filters. These issues are the 

main reasons of high-order filter development efforts in the recent 
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decade [1–5] . Nearly all of these filters are developed to use in the 

finite difference methods which impose some restrictions for ap- 

plying them in the finite volume methods. For example, the first 

and last values of variable vector are not included in the formula- 

tions of these filters by supposing that they are determined from 

the boundary conditions. The present work introduces a procedure 

for filtering of cell-averaged variables in the FVMs. The base of this 

procedure is to filter face-averaged variables (fluxes) and then the 

recovery of cell-averaged ones. A new compact formulation is pro- 

posed here for the recovery step. This formulation besides an older 

compact formulation results in two kinds of filtering method. The 

first kind is highly dissipative and appropriate for the numerical 

regions that need high dissipation, e.g. sponge zones. The second 

kind, on the other hand, is a precise method and hence is suitable 

for applying the high -order finite difference filters to the FVMs. In 

the next sections, the presented filtering method is described and 

assessed by some numerical test cases, including advection of one 

dimensional wave packet, convection of two-dimensional vortical 

wave and the large eddy simulation of round jet at Re = 10 4 and 

10 5 . 

2. Filtering method 

Consider a two-dimensional grid with numbering as shown in 

Fig. 1 . The cell- and face-averaged parameters on such a grid are 

http://dx.doi.org/10.1016/j.compfluid.2016.03.011 

0045-7930/© 2016 Published by Elsevier Ltd. 

http://dx.doi.org/10.1016/j.compfluid.2016.03.011
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compfluid
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compfluid.2016.03.011&domain=pdf
mailto:farshchi@sharif.edu
http://dx.doi.org/10.1016/j.compfluid.2016.03.011


20 M. Ghadimi et al. / Computers and Fluids 132 (2016) 19–31 

Fig. 1. A tow-dimensional grid in the computational space. 

defined, respectively, as follows [16–18] : 
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where ξ and η are the computational space coordinates. In the fi- 

nite volume methods the face-averaged fluxes are obtained from 

the cell-averaged variables. For example, these fluxes are computed 

by the following formulation in the compact FVM [16–18] : 
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where, to have a fourth-order accuracy, the constants a and b are 

obtained as follows [16] : 

a = 

1 

4 

, b = 

3 

4 

(4) 

Knowing the fluxes, the cell-averaged variables advance in time 

according to the governing equations. These cell-averaged values 

are then filtered by the proposed method. Since the fluxes are 

available in the numerical process of FVM, they are used as a 

medium of filtering in the proposed method. So, the computa- 

tion of the fluxes by means of Eq. (3) is the first step of filter- 

ing. The next step is to filter these fluxes by the finite difference 

filters. It must be noted that this step can be performed without 

any restriction. The filtered cell-averaged values are then recovered 

from these filtered fluxes. This recovery process needs a formula- 

tion similar to Eq. (3) . Here, to satisfy this requirement a compact 

formulation is introduced as follows: 
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The coefficients in this equation are obtained by matching Tay- 

lor’s expansion on both the sides up to the fourth-order. The two- 

dimensional Taylor series of parameter φ up to the fourth-order is 

as follows: 
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Then the terms involved in Eq. (5) are obtained by using Eqs. 

(1) and ( 2 ) as follows: 
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By substituting these series in Eq. (5) , the coefficients are ob- 

tained as follows: 

c = 

1 

10 

, d = 

3 

5 

(8) 

Now, two different methods can be used for recovering the 

filtered cell-averaged parameters from the filtered face-averaged 

ones by means of Eqs. (3) and ( 5 ). The first method labeled as 

“Method 1” uses Eq. (5) for the recovery process. However, Eq. 

(5) cannot be applied to the end cells for a non-periodic bound- 

ary condition. Eq. (3) is therefore proposed for using in these cells 

and completing the related tri-diagonal matrix. The second method 

labeled as “Method 2” uses Eq. (3) for the recovery of cell -averaged 

values from the filtered face-averaged ones. When this equation is 

applied in a line with n cells, n – 1 equations are obtained. One 

additional equation needed to complete the system of equations 

is obtained from applying Eq. (5) to the last but one cell. The re- 

sulted tri-diagonal matrix in both the methods is solved by the 

Thomas algorithm. Using the fourth-order formulations in all cells, 

including the interior and the end ones, both the methods have 

a fourth-order accuracy. However, since a same equation is used 

for computing fluxes from the cell-averaged values and the inverse 

computation in Method 2, the order of accuracy of this method de- 

pends only on the order of filter used for the fluxes. For the multi- 

dimensional problems the mentioned filtering process can be ap- 

plied sequentially in each direction. 

Filtering of the face-averaged values which is the second step 

of both the presented methods is made by the formerly presented 

explicit or implicit filters. Explicit filters have the following general 

formulation: 

ˆ φi = φi − σd 

q ∑ 

n = −p 

d n φi + n (9) 

where the symbol “^ ” represents the filtered value and σ d is the 

filtering strength taken between 0 and 1. Higher values of σ d in 

this range represent a more dissipative filter. The central formu- 

lation of this filter for the interior points is presented by p = q 

[2] . The coefficients d n are classically obtained by canceling the π- 

mode and equating Taylor’s expansion of both sides of Eq. (9) up to 

the desired order of filter [19] . However, some works [1,2] have ob- 

tained these coefficients by optimizing the transfer function of the 

filter to minimize the dissipation of filtering in a desirable range 
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