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a b s t r a c t 

The field of application of the Random Particle Mesh (RPM) method used to simulate turbulence-induced 

broadband noise in several aeroacoustic applications is improved to realise isotropic turbulence spectra. 

With this method turbulent fluctuations are synthesised by filtering white noise with a Gaussian filter 

kernel that in turn gives a Gaussian spectrum. The Gaussian filter is efficient and finds wide-spread ap- 

plications in stochastic signal processing. However Gaussian spectra do not correspond to real turbulence 

spectra. Thus in turbo-machines the von Kármán , Liepmann , and modified von Kármán spectra are more re- 

alistic model spectra. In this note we analytically derive weighting functions to realise arbitrary isotropic 

solenoidal spectra using a superposition of weighted Gaussian spectra of different length scales. The an- 

alytic weighting functions for the von Kármán , the Liepmann , and the modified von Kármán spectra are 

derived subsequently. Finally a method is proposed to discretise the problem using a limited number 

of Gaussian spectra. The effectivity of this approach is demonstrated by realising a von Kármán velocity 

spectrum using the RPM method. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

A stochastic noise signal of a certain spectral shape can be gen- 

erated by convolution of a white noise signal by a filter kernel of 

an appropriate shape [1] . 

One of the most common filter kernels is the Gaussian filter ker- 

nel that realises a Gaussian spectrum. The Gaussian filter is very 

simple and time efficient as it has benefitial characteristics: its 

derivatives and integrals are again Gaussian functions; the filter is 

separable along each spatial dimension so that it can be applied 

to each dimension independently; fast filter methods are available, 

such as Purser [2] and Young and Van-Vliet [3] filters. 

But Gaussian spectra seldom represent the physics of turbu- 

lence. Here more elaborate spectra are needed, such as Kolmogorov , 

von Kármán or Liepmann spectra. For these spectra the filter ker- 

nels are very complicated to use and they are fully coupled in 

space, as shown by Dieste and Gabard [4] . 

Siefert et al. [5] succeeded in realising the Kolmogorov spec- 

trum using the superposition of weighted Gaussian spectra. The 

weight of each Gaussian spectrum was optimised empirically to fit 

the target spectrum. Others have adopted this method for other 

∗ Corresponding author. Tel.: +49 30 310 0 06-21; fax: +49 30 310 0 06–39. 

E-mail address: attila.wohlbrandt@dlr.de (A. Wohlbrandt). 

kinds of spectra, e.g., just recently Gea-Aguilera et al. [6] and Kim 

et al. [7] published their findings. Note that the method introduced 

here has already been presented by the authors on conferences but 

not derived in detail [8,9] . 

The objective of this note is to provide a theoretical background 

for determining the appropriate analytical weighting function by 

means of Gaussian transform [10] . The analytical weighting func- 

tion is derived for the von Kármán , the Liepmann and the modi- 

fied von Kármán spectra. Furthermore, an efficient method is pro- 

posed to discretise the weighting function with a limited number 

of Gaussian spectra. Suggestions are made to choose the number of 

filters and their length scales. As illustration, the realised velocity 

spectrum using the RPM method [1] is compared to the analyti- 

cally derived velocity spectrum. 

2. Method - Gaussian transformation 

The weighting functions are derived in the three dimensional 

(3D) space. As it will be briefly discussed in Section 2.4 the de- 

rived weighting functions can be applied to the two dimensional 

(2D) space without modification. The realised energy and velocity 

spectra differ in 2D and 3D in agreement to the theory [11] . 
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2.1. Turbulence spectra 

The most popular models for isotropic turbulence are the von 

Kármán , Liepmann , and modified von Kármán models [12] . 

2.1.1. The von Kármán spectrum 

The von Kármán spectrum is commonly used to represent ho- 

mogeneous isotropic turbulence. It satisfies the energy law distri- 

bution of k 4 for the large eddies which contain most of the energy 

and reproduces the k −5 / 3 gradient in the inertial subrange. The en- 

ergy spectrum is given by 

E K ( ̂ k ) = 

55 

9 π
u 

2 
t �

ˆ k 4 

(1 + ̂

 k 2 ) 17 / 6 
, (1) 

with the mean turbulent velocity u t related to the turbulent inten- 

sity T u and the mean flow velocity u 0 by u 2 t = (T u · u 0 ) 
2 , the in- 

tegral length scale �, and the reduced wavenumber ˆ k defined by 
ˆ k = k ∗/ k e , where k ∗ = k �, and k e = 

√ 

π�(5 / 6) 
�(1 / 3) 

. 

2.1.2. The Liepmann spectrum 

Liepmann determined turbulence longitudinal correlation coef- 

ficients from measurements and found that they can be approxi- 

mated by an exponential law f (x ) = exp 

(−x 
�

)
. The resulting model 

spectrum is given as [12,13] : 

E L (k ∗) = 
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2 
t �

π

k ∗4 
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) 3 

. (2) 

The Liepmann spectrum is comparable in shape to the von Kármán 

spectrum. 

2.1.3. The modified von Kármán spectrum 

According to Bechara [14] the von Kármán spectrum can be 

modified to be representative over the entire wavenumber range 

including the dissipation subrange 

E M 

( ̂ k ) = E K ( ̂ k ) exp 

(
−2 

k 2 

k 2 
d 

)
(3) 

with the Kolmogorov wavenumber k d = 

(
ε
ν3 

)1 / 4 
, where ε is the 

specific dissipation rate and ν is the eddy viscosity. 

2.2. Weighting function 

According to Ewert et al. [1] filtering of a white noise field with 

a Gaussian filter kernel of a specific length scale realises a Gaussian 

spectrum of the form 

E G (k ) = 

4 u 
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t �

π3 
k ∗4 
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−k ∗2 

π . (4) 

For convenience we introduce a new spectrum e G such that its 

integral over the wavenumber range is one, i.e. ∫ ∞ 

0 

e G (k ) d k = 1 ⇒ E G (k ) = 

3 

2 

u 

2 
t e G (k ) . (5) 

We are looking for a weighting function f ( l, �) to realise an 

arbitrary spectrum e ( k ) of integral length scale � by means of a 

superposition of Gaussian spectra e G of length scales l : 

e (k, �) = 

∫ ∞ 

0 

f (l, �) e G (k, l ) d l . 

Using Eqs. (4) and (5) yields the following solution: 

e (k, �) = 

∫ ∞ 

0 

f (l , �) 
8 

3 π3 
l 5 k 4 exp 

(
−k 2 l 2 

π

)
d l . (6) 

Note that only the weighting function f ( l, �) depends on the inte- 

gral length scale �. In the following we drop � in the expression 

of the weighting function f and write f (l, �) = f (l) . 

Fig. 1. The weighting function f ( l ) is used to realise typical turbulence spectra of 

length scale � using a superposition of Gaussian spectra of various length scales 

l . The analytical weighting functions for the von Kármán (solid), the Liepmann 

(dashed), and the modified von Kármán (dash-dot) spectra are shown. 

A parameter σ is introduced to write Eq. (6) in a suitable man- 

ner for Gaussian transform as defined by Alecu et al. [10] . This pa- 

rameter verifies the two following relationships: 

l 2 = 

π

2 σ 2 
and 

d l 

d σ 2 
= −

√ 

π

2 
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2 σ 3 
. 

Eq. (6) rewrites: 
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According to Alecu et al., p ( k ) is a zero-mean generic symmetric 

distribution, G (σ 2 ) is the mixture function and N (k | σ 2 ) is the 

zero-mean Gaussian distribution. The Gaussian transform G is de- 

fined as the operator which transforms p (k ) into G (σ 2 ) . The in- 

verse Gaussian transform G −1 (G (σ 2 )) = p (k ) is simply given by 

Eq. (7) . 

From Eq. (7) the weighting function f ( l ) is given as 

f 
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2.2.1. Von Kármán weighting function 

With the von Kármán spectrum given in Eq. (1) the left-hand 

side of Eq. (7) becomes 

p (k ) = 

110 

27 π
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1 
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. (9) 

The direct Gaussian transform is given by Alecu et al. [10, Eq.(4)] : 
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where L 

−1 is the inverse Laplace transform. Using the relation 

L 
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where �(n ) = (n − 1)! is the gamma function, we find for Eq. (9) 
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and the weighting function for the von Kármán spectrum is given 

by 

f K (l) = 
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Fig. 1 shows the corresponding weighting function. 
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