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a b s t r a c t 

An unstructured-mesh finite-volume formulation for the solution of systems of steady conservation laws 

on embedded surfaces is presented. The formulation is invariant to the choice of local tangential co- 

ordinate systems and is stabilized by a novel up-winding scheme applicable also to mixed-hyperbolic 

systems. The formulation results in a system of non-linear equations which is solved by a quasi-Newton 

method. While the finite volume scheme is applicable to a range of conservation laws, it is here imple- 

mented for the solution of the integral boundary layer equations, as a first step in developing a fully 

coupled viscous-inviscid interaction method. For validation purposes, integral boundary layer quantities 

computed using a minimal set of three-dimensional turbulent integral boundary layer equations are com- 

pared to experimental data and an established computer code for two-dimensional problems. The valida- 

tion shows that the proposed formulation is stable, yields a well-conditioned global Jacobian, is conser- 

vative on curved surfaces and invariant to rotation as well as convergent with regard to mesh refinement. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

Viscous-inviscid interaction (VII) methods allow computation of 

viscous flow properties with relatively high accuracy at a rela- 

tively low computational cost. For aeronautical applications, inte- 

gral VII methods are currently used for prediction of viscous flow 

properties over two dimensional airfoil sections and are able to 

maintain adequate solution accuracy even in the somewhat chal- 

lenging regime of transitional flows involving laminar separation 

bubbles [1] . Some three-dimensional inviscid flow solvers have 

been extended with approximate boundary layer analysis meth- 

ods which solve for two-dimensional boundary layer development 

along surface streamlines or slices of a structured mesh [2,3] . 

Due to the simplifications involved, such an approximate solu- 

tion cannot account for three-dimensional effects such as cross- 

flow within the boundary layer. Some applications, such as the 

aerodynamic design of wing–fuselage fairings, benefit substantially 

from fully accounting for the three-dimensional boundary layer 

development [4] . A number of attempts have been made to de- 

velop a fully three-dimensional VII scheme, a review is given by 

van Garell [5] , but, to the authors’ knowledge, for general, large 

scale, three-dimensional problems defined on complex geometries 
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with unstructured meshes such a scheme is not readily available 

at present. 

As a step towards developing a robust fully three-dimensional 

VII method applicable to whole aircraft configurations the current 

study describes the development of a surface discretization for so- 

lution of steady conservation laws. There are a few things which 

need to be considered. The integral boundary layer (IBL) equations 

have a complex character which can change between hyperbolic 

and mixed-hyperbolic depending on the chosen closure relations 

[6] . The integral equations are obtained by wall-normal integration 

of the corresponding differential equations and for curved surfaces 

the integral equations are thus defined on a two-parametric sur- 

face in three space dimensions. Because of the reduced mesh gen- 

eration effort, it is desirable that the discretization scheme is ap- 

plicable to unstructured meshes. Together, these aspects set high 

standards for the discretization. 

Based on a local Cartesian formulation [7] , Mughal, Nishida and 

Drela have applied modified Galerkin finite-element methods to 

discretize different sets of IBL equations [6,8,9] . Some of these 

formulations bear resemblance to a streamline-upwind Petrov- 

Galerkin approach [10] . This method is well established, but re- 

quires that an upwind direction can be defined unambiguously 

and also the tuning of a scalar stabilization parameter. It was 

found rather difficult to robustly define both direction and stabi- 

lization parameter for general three-dimensional problems on ar- 

bitrary surfaces. Later work by Drela [9] makes use of a standard 

Galerkin finite-element method which is stabilized by the addition 
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Nomenclature 

Coordinate systems 

G Global Cartesian coordinate system 

C Local Cartesian coordinate system 

x , y , z Cartesian coordinate vectors 

s , c , n Streamline based Cartesian coordinate vectors 

Symbols related to discretization 

u Nodal variables 

F Flux function 

g Source function 

f Flow vector 

n Normal vector 

S Cell face area 

V Cell volume 

M Rotation matrix 

T Rotation matrix (also row permutation matrix) 

t Rotation axis 

αij Angle between cell normals i, j 

C Barycenter of mesh triangle 

P Edge mid-point of mesh triangle 

r Local residual vector 

R Global residual vector (also right eigenvectors) 

Symbols related to upwind-scheme 

� Block-diagonal matrix with eigenvalues 

L Left eigenvectors 

R Right eigenvectors (also global residual vector) 

T Row permutation matrix (also rotation matrix) 

w Transformed nodal variables 

D Diagonal matrix with weight factors 

A Matrix 

B Matrix 

α Weight factor 

C Condition number 

Symbols related to integral boundary layer equations 

θ Momentum loss thickness 

δ∗ Displacement thickness 

θ ∗ Energy deficit thickness 

δ∗∗ Density thickness 

τ Shear stress 

D Dissipation 

βw 

Cross flow angle 

H k Kinematic shape factor 

u, w x-, z-components of velocity 

q Magnitude of velocity 

ρ Density 

ν Dynamic viscosity 

Re Reynolds number 

X Nodal quantity 

e X Relative error 

Subscripts 

e Value at edge of boundary layer 

∞ Freestream value 

1 Streamwise value 

i, j Cell index 

Superscripts 

( i ), ( j ) Quantity expressed in local Cartesian coordinate 

system i, j 

( G ) Quantity expressed in global Cartesian coordinate 

system 

of a symmetrically diffusive artificial dissipation term. The prob- 

lem of selecting an appropriate stabilization (artificial dissipation) 

parameter can be circumvented by means of a least-squares finite 

element (LSFEM) approach [11] . Regrettably, earlier work by one of 

the present authors showed that, at least for standard formulations 

of the IBL equations, the LSFEM yields rather ill-conditioned prob- 

lems due to the squaring of the residual terms. Furthermore, its 

was found difficult to treat domains with multiple inflow bound- 

ary conditions such as full aircraft configurations, as the dissipative 

characteristics of the LSFEM introduced too large errors. Closer ex- 

amination shows that the desired solution for such a case is distin- 

guished by large gradients of the boundary layer variables in the 

cross-flow direction, as the thick boundary layer developing along 

the fuselage meets a rather thin layer starting at the wing leading 

edge. The solution in these areas is thus severely affected by the 

dissipative characteristics. 

Hyperbolic problems permitting discontinuities are often solved 

by means of a finite-volume scheme and such a scheme forms the 

basis for the present discretization. When applied to hyperbolic 

problems finite volume schemes can be made stable and well- 

conditioned by means of upwinding [12] . However, since the in- 

tegral boundary layer equations can switch between a hyperbolic 

and a mixed-hyperbolic character [6] there is a need to employ 

a discretization which is stable also in mixed-hyperbolic regions. 

An important contribution of the present work is that it employs a 

novel approach to determine the required upwind-biased flux term 

for general forms of conservation and closure equations. The cur- 

rent discretization is based on a local Cartesian formulation [6] . For 

application on embedded surfaces there is thus a need to trans- 

form the flow leaving one control volume into an equivalent flow 

expressed in the local coordinate system of the neighboring control 

volume in a way which ensures flow conservation. In the current 

formulation this is achieved by a set of rotation matrices which 

will be described in detail. 

It is to be noted that the discretization scheme in the present 

study is not limited to applications related to the integral boundary 

layer equations but are applicable to any system of steady conser- 

vation laws defined on an embedded surface. 

2. Method 

This section describes the formulation of the finite-volume 

scheme as well as its application for the solution of a set of three- 

dimensional IBL equations. 

2.1. Finite volume discretization 

Systems of conservation laws are typically written as 

∂ u 

∂t 
+ ∇ s · F ( u ) + g ( u ) = 0 . (1) 

where, ∇ s · F represents the surface divergence of a flux function 

F , while g describes a source function and u denotes the variables. 

For steady problems, which are the focus of the present study, the 

time derivative vanishes. 

A finite-volume discretization of (1) is obtained by integration 

over a small control volume and application of Gauss’ divergence 

theorem ∫ 
V 

∇ s · F ( u ) + g ( u ) dV 

= 

∫ 
S 

F ( u ) · n s dS + 

∫ 
V 

g ( u ) dV, (2) 

where V is a control volume and S its boundary. The first term on 

the right-hand side contains the flow d f = F · n s dS obtained by the 

product of the flux and the cell boundary normal n s , where the 
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