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This short communication discusses the initial and boundary conditions as well as the size of the com- 

putational domain for the double Mach reflection problem when set up as a test for the resolution of an 

Euler scheme for gas dynamics. 

© 2016 Elsevier Ltd. All rights reserved. 

1. The double Mach reflection 

A standard test for the quality of a Riemann solver is the dou- 

ble Mach reflection problem. It was suggested by Woodward and 

Colella [1] , as a benchmark for Euler codes. An analytical treatment 

is found in [2] and [3] and the references therein, while experi- 

mental results are presented in [4] and also in [3, pp. 152 and 168] . 

Recent examples for its use as test of very high order schemes 

are, e. g., [5,6] . The problem consists of a shock front that hits a 

ramp which is inclined by 30 degrees. When the shock runs up the 

ramp, a self similar shock structure with two triple points evolves. 

The situation is sketched out in Fig. 1 . To simplify the graphical 

representation, the coordinate system is aligned with the ramp –

as done for the numerical tests. In the primary triple point, the 

incident shock i , the mach stem m , and the reflected shock r meet. 

In the double mach configuration, the reflected shock breaks up 

forming a secondary triple point with the reflected shock r , a sec- 

ondary (bowed) mach stem m 

′ , and a secondary reflected shock r ′ . 
From both triple points, slip lines emanate. The reflected shock r ′ 
hits the primary slip line s causing a curled flow structure, the 

resolution of which may serve as an indicator for the resolution 

of a numerical scheme. As was already stated by Woodward and 
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Colella, the main challenge for a high resolution scheme is to re- 

solve the secondary slip line s ′ . Being a rather weak feature, it is 

hardly visible in a density plot (e. g., [5,6] ) or a plot of any velocity 

component. According to Woodward and Colella [1] , the secondary 

slip s ′ line can be best observed in the vertical momentum, which 

is confirmed by the results depicted in Fig. 3 . Thus, throughout this 

paper we present the results for the vertical momentum ρv . 

2. The problem: two issues 

For our numerical tests, we use the setting as described in [1] . 

We start with the shock, a Mach 10 shock in a γ = 1 . 4 gas, already 

on the ramp and rotate the coordinate system, so that the compu- 

tational grid is aligned with the ramp. The undisturbed gas ahead 

of the shock has a density of 1.4 and a pressure of 1. 

The initial shock hits the bottom of the computational domain 

at x 0 = 1 / 6 . Usually the computational domain is chosen as [0, 4] 

× [0, 1] and the results are presented for t = 0 . 2 . At the bottom, 

we employ solid wall conditions, at the right boundary outflow. At 

all other boundaries we use Dirichlet–conditions, which are set to 

the physical values. 

Unfortunately, as the results in Fig. 2 show, there are severe dis- 

turbances of the flow close to the secondary slip line. Depending 

on the scheme and the grid resolution, it is difficult to distinguish 

between slip line and numerical artifact. 
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Fig. 1. Sketch of the double Mach reflection problem. The bottom line represents 

the ramp. 

As Fig. 2 shows, this setting results in some numerical arti- 

facts disturbing the secondary reflected shock r ′ and the region 

between the secondary reflected shock and the secondary slip line. 

At lower resolutions (left picture), the artifacts are not distinguish- 

able from the secondary slip line s ′ . While Woodward and Colella 

[1] , blame this effect to the under-resolved shock in the initial con- 

dition, Rider et al., [7] argue that the under-resolved shock in the 

boundary condition for the upper boundary is responsible for it. 

Both are partially right and partially wrong. 

In Fig. 3 , we show results for the double Mach reflection com- 

puted on [0, 4] × [0, 2] instead of [0, 4] × [0, 1]. It can be seen 

that what in Fig. 2 seemed to be one (kinked) phenomenon in fact 

are two artifacts: one arising from the shock position at the up- 

per boundary–it shows up as a slight disturbance above the shock 

close to the right boundary and as a slight disturbance a little 

bit left of the secondary slip line–and one that follows the shock 

at a certain distance (and slightly to the right of the secondary 

slip line), indicating that it results from the initial condition. This 

means that there indeed is an artifact arising from the initial con- 

dition (hypothesis by Woodward and Colella) and an artifact aris- 

ing from the boundary condition (hypothesis by Rider et al.). 

In the following, we will investigate both hypotheses by means 

of numerical tests with different settings. This will give us some 

hints on the proper use of the double Mach reflection as a test 

case for Euler codes. 

3. The numerical environment for the tests 

To set up tests in order to investigate the hypotheses by Rider 

et al., and by Woodward and Colella, one has to make sure that 

the grid resolution is the only variable parameter in the numerical 

scheme. Besides this, the size of the computational domain and the 

initial and the boundary conditions may vary. But the basic fea- 

tures of the method have to be fixed, including Riemann solver, 

grid structure, basic approach (finite differences, finite volumes, 

discontinuous Galerkin,...), reconstruction techniques, limiters, time 

scheme etc. In this study, we resort to finite volumes on a uni- 

form equidistant Cartesian grid with �x = �y . The basic scheme 

uses wave propagation according to LeVeque [8] , with algebraic 

limiting and Roe with Harten-Hyman entropy fix [9] . Thus, it is 

a second order TVD-scheme. The second order corrections are ap- 

plied also for the corner fluxes. As limiter, we employ the mixed 

use of CFL-Superbee and Superpower as described in [10] , modi- 

fied for nonlinear waves according to Jeng and Payne [11] as de- 

scribed in [12] . The code used for the examples is clawpack [13] . 

No special starting procedure, reduced time steps etc., is employed. 

As for Fig. 2 , we do not show the entire computational domain. 

We restrict the x -direction to [0, 3] or, in Fig. 4 , show a close-up 

of the region of interest: the region containing the triple points. 

As already mentioned, the quantity shown is always the vertical 
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Fig. 2. Numerical artifact near the secondary slip line in the standard setting with �x = �y = 1 / 120 (left) and �x = �y = 1 / 480 (right) and computational domain [0, 4] ×
[0, 1]. Note the interference of the slip line and the numerical artifact. 
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Fig. 3. Double Mach reflection computed on [0, 4] × [0, 2]. Left vertical momentum, right density. Note that in the density plot, the secondary slip line is invisible. 
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