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a b s t r a c t 

The volume penalization (VP) method for compressible flows is investigated as a tool of direct numerical 

simulation of aeroacoustic sound in problems where not only acoustic pressure but also hydrodynamic 

pressure depends on time and position. First, it is shown that the method proposed by Liu and Vasi- 

lyev (2007) [30] is not Galilean invariant. It is corrected to satisfy Galilean invariance. Next, numerical 

accuracy of the corrected VP method is investigated in problems of simple geometry which can be simu- 

lated also by a standard method on a body-fitted coordinate system: sound generation in (i) flow past a 

fixed square/circular cylinder, (ii) flow past an oscillating square/circular cylinder, and (iii) flow past two 

square cylinders. The results confirm that the corrected VP method gives reasonably accurate results for 

sound pressure which is much smaller than hydrodynamic pressure within 5% error. Finally, the corrected 

method is applied to two examples of complex geometry, which cannot be simulated by standard meth- 

ods using body-fitted coordinate systems without considerable difficulty: sound generation in (i) flow 

past an oscillating cylinder and a fixed cylinder behind it and (ii) flow past a bundle of cylinders. The 

results show that the present method is in principle applicable to aeroacoustic problems in any complex 

geometry including practical engineering ones. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

The aeroacoustic noises radiated from airplanes, high-speed 

trains, helicopters, wind turbines etc. are one of the great concerns 

these days since they have significant negative effects on our 

daily lives. The problem is becoming more and more serious as 

the speed of the trains or the wings increases since the power 

of the noises increases significantly as M 

5 ∼ M 

8 , where M is the 

Mach number based on the characteristic flow velocity and the 

exponent depends on the problem. Thus there is increasing need 

for reduction of the aeroacoustic noises in a variety of industrial 

applications. 

In order to reduce the aeroacoustic noises we should under- 

stand the mechanism of their generation and propagation. A num- 

ber of experimental efforts have been devoted for it. However, 

there are a few difficulties in investigating aeroacoustic noises in 

the experiments: it is difficult to remove background noises which 

contaminate the aeroacoustic noises; it is also difficult to obtain 

∗ Corresponding author. Tel.: +81 222175256; fax: +81 222175256. 

E-mail address: hattori@fmail.ifs.tohoku.ac.jp (Y. Hattori). 

field data of physical variables including pressure and velocity, al- 

though recent progress in time-resolved particle image velocime- 

try is worth noting [1,2] . Theoretical studies have been successful 

since the pioneering work by Lighthill [3] . Various types of the- 

ory or acoustic analogy are available. In order to predict the aeroa- 

coustic noises time-varying field data of sound sources should be 

provided; this is done by numerical simulation in one branch of 

computational aeroacoustics called a hybrid method. In the hybrid 

method, however, the accuracy depends on to what extent the as- 

sumptions made in the theories are satisfied. 

Direct numerical simulation (DNS) of the aeroacoustic sound 

emerged as another branch of computational aeroacoustics about 

two decades ago. Finite difference methods with high accuracy and 

non-reflecting boundary conditions, together with rapid growth 

of computer power, are combined to overcome three difficulties: 

(i) the sound pressure of the aeroacoustic noises is usually much 

smaller than the ambient pressure; (ii) acoustic waves are reflected 

at the far boundaries of the computational domain when con- 

ventional boundary conditions are used; and (iii) a large num- 

ber of grid points are required to cover both the flow and the 

sound regions. See Colonius and Lele [4] and Wang et al. [5] for 

computational aeroacoustics. A number of aeroacoustic problems 
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have been successfully solved including the sound radiated by co- 

rotating vortices [6] , sound generation in a mixing layer [7] , a jet 

[8,9] , and a cavity flow [10] , sound generation by collision of vortex 

rings [11,12] and unsteady motion of a cylinder [13] , and the Aeo- 

lian tones [14–16] . However, these studies are limited to flows in a 

simple geometry since most of the finite difference methods with 

high accuracy cannot be applied to complex geometries where un- 

structured mesh systems are used. This limitation implies that we 

cannot simulate directly the aeroacoustic noises from high-speed 

trains, helicopters, and wind turbines, all of which have complex 

geometries in the sense that the boundaries of rigid bodies have 

different length scales and various directions. The geometry can 

be even deformable as the rotor of a wind turbine rotates while 

the main rotor shaft is fixed generating low-frequency noises due 

to their interaction; it is challenging to capture the noises by ex- 

isting methods of DNS since a body-fitted coordinate (BFC) sys- 

tem should deform too or an overset grid system should be im- 

plemented without losing high accuracy. Thus methods for DNS 

of aeroacoustic sound which can be used for complex and/or de- 

formable geometries are expected. 

One possible way to realize DNS of aeroacoustic sound in com- 

plex geometries is to use the immersed boundary methods, which 

are widely used for flows in complex geometries [17] . There are 

several studies in which the immersed boundary method is used 

for compressible flow. It is Chung and Morris [18] who applied the 

immersed boundary method in acoustic scattering problem for the 

first time. Chaudhuri et al. [19] studied shock/obstacle interactions. 

Acoustic scattering, which is essentially a linear problem, is stud- 

ied by a few groups [20–22] . To our knowledge, however, there has 

been no DNS of the aeroacoustic sound, which is a nonlinear prob- 

lem, by the immersed boundary method although Seo and Mittal 

[20] studied the aeroacoustic sound by a hybrid method. 

The volume penalization (VP) method, which is one of the im- 

mersed boundary methods, has been applied mostly to incom- 

pressible flows [23–28] . One of the advantages of the VP method 

for incompressible flows is that it has a firm mathematical basis. 

In the VP method we solve the Navier–Stokes equations supple- 

mented by penalization terms instead of imposing no-slip bound- 

ary conditions at the surface of rigid bodies in the flow. The solu- 

tions to this penalized Navier–Stokes equations converge to those 

to the original problem of the Navier–Stokes equations with no- 

slip boundary conditions in the limit of vanishing permeability 

[23,29] . For compressible flows, on the other hand, there are only 

a few studies. Liu and Vasilyev [30] introduced a new penalization 

term into the mass conservation law and showed that reflection of 

acoustic waves is correctly captured by it. Boiron et al. [31] stud- 

ied shock/obstacle interaction by the VP method. Recently Brown- 

Dymkoski et al. [32] proposed a method to implement the Neu- 

mann and the Robin boundary conditions in the VP method in ad- 

dition to the Dirichlet boundary conditions. Mathematical results 

are known for a restricted case of homentropic flows [33] . 

In this paper we study the applicability of the VP method to 

DNS of the aeroacoustic sound. Our aim is to obtain acoustic waves 

and flow fields simultaneously with sufficient accuracy. It should 

be emphasized that there has been no such study, while previ- 

ous studies have focused on the accuracy of only flow fields or 

acoustic waves in the absence of flow fields. This is not a sim- 

ple problem since the pressure cannot be decomposed into acous- 

tic pressure and hydrodynamic pressure by a simple method. In 

fact, in low Mach number flows in which the aeroacoustic sound 

source is compact the acoustic pressure is usually proportional to 

M 

2 . 5 ∼4 r −1 / 2 and M 

3 ∼4 r −1 in two dimensions and three dimensions, 

respectively, where r is the distance between the observation point 

and the sound source region, while the hydrodynamic pressure is 

proportional to M 

2 r −2 and M 

2 r −3 , respectively. Thus the acoustic 

pressure which is dominant in the far field is often undetectable by 

existing methods since it is much smaller than the hydrodynamic 

pressure and is the same order as numerical error in the flow re- 

gion. More importantly, we will show that the method proposed 

by Liu and Vasilyev [30] should be corrected to satisfy Galilean in- 

variance. 

The paper is organized as follows. In Section 2 we show that 

the method proposed by Liu and Vasilyev [30] is not Galilean in- 

variant and a corrected method is presented. After describing the 

numerical methods in Section 3 , numerical accuracy of the cor- 

rected method is investigated in Section 4 . We choose a simple 

geometry so that the aeroacoustic sound is calculated both by the 

VP method and by a standard method. Comparison between the 

results by the two methods should provide a good validation of 

the VP method since it has been well established that the stan- 

dard method gives accurate results. We consider the sound gen- 

erated in a flow past a fixed square cylinder ( Section 4.1 ), a flow 

past an oscillating square cylinder ( Section 4.2 ), a flow past two 

square cylinders in a side-by-side arrangement ( Section 4.3 ), and 

a flow past a fixed/oscillating circular cylinder ( Section 4.4 ). Then 

we show an example of application to deformable geometries in 

Section 5 . The final section Section 6 concludes the paper. 

2. Volume penalization method for compressible flow 

2.1. Method proposed by Liu and Vasilyev [30] 

In the VP method for compressible flow proposed by Liu and 

Vasilyev [30] the compressible Navier–Stokes equations are com- 

plemented by penalization terms as follows 

∂ρ

∂t 
+ 

∂ 

∂x j 
(ρu j ) = −

(
1 

φ
− 1 

)
χ

∂ 

∂x j 
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(3) 

where ρ is the density of the fluid, u i is the velocity, p is the pres- 

sure, τi j = μ( 
∂ u i 
∂ x j 

+ 

∂ u j 
∂ x i 

− 2 
3 

∂ u l 
∂ x l 

δi j ) is the viscous stress tensor, e is 

the total energy, T is the temperature, U 0, i and T 0 are the veloc- 

ity and the temperature of the rigid bodies, respectively, φ is the 

porosity, η is the viscous permeability, and ηT is the thermal per- 

meability. Usually the permeabilities are assumed small: 0 < η, 

ηT � 1. Throughout the paper the viscosity μ and the thermal 

conductivity κ are assumed to be constant. The Prandtl number 

P r = γμ/κ is set to 0.72, where the ratio of the specific heats γ is 

set to 1.4. The fluid is assumed to be an ideal gas; the equation of 

state 

p = ρRT = (γ − 1) 
(

e − 1 

2 

ρu i u i 

)
, (4) 

where R is the gas constant, closes the set of equations. 

In the VP method the boundaries between the fluid and the 

rigid bodies need not coincide with surfaces of grid points. Instead 

the mask function χ defined by 

χ( x , t) = 

{
1 if x ∈ rigid bodies , 

0 otherwise 
(5) 

differentiates the fluid and the rigid bodies in Eqs. (1) –(3) . The 

terms which involve χ are the penalization terms. In the flow 

region, where χ = 0 , the equations reduce to the ordinary com- 

pressible Navier–Stokes equations. On the other hand, in the rigid 
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