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a b s t r a c t 

A new meshfree framework based on Hermite Taylor Least Square Finite Difference method is proposed. 

The conventionally used Least Square Finite Difference (LSFD) scheme with ghost point method for Neu- 

mann boundary conditions is known to have shortcomings especially for irregular nodal distributions. In 

this work, the performance of the LSFD scheme is augmented by incorporating a novel Hermite Taylor 

Least Square (HTLS) method for easy and efficient implementation of the Neumann boundary conditions. 

The method is initially validated by solving a Poisson equation with both Dirichlet and Neumann bound- 

ary conditions. With its promising numerical performance, the method is extended to the full Navier–

Stokes equations in two dimensions. An innovative adaptive upwind scheme is adopted to handle the 

convective terms in the momentum equations by modifying the support domain in the upstream di- 

rection. By using a modified Euclidean distance function according to the local flow direction and the 

value of parameter that controls the convection effect (mesh Peclet number), the local support domain 

can be shifted towards the upstream direction thereby naturally incorporating the upwind effect while 

computing the coefficients for the LSFD method. The Navier–Stokes equations are solved in a primitive 

variables (velocity and pressure) approach by using a first order semi-implicit projection method. In order 

to validate the developed framework, three flow problems (lid driven cavity, channel flow and flow over 

a circular cylinder) are considered. All of these problems are well documented because of their bench- 

marking relevance. It is observed that the new framework produces results which match qualitatively as 

well as quantitatively with earlier established theory and observations and hence demonstrate its ability 

to successfully simulate flows of practical interest in an entirely meshfree approach. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

Although the conventional CFD methods like finite difference 

method (FDM), finite element method (FEM) and finite volume 

method (FVM) are highly matured disciplines and produces ac- 

curate and stable results in majority of the cases, the common 

bottleneck is the generation of a mesh. In the last decade, exten- 

sive research has been therefore conducted in the field of mesh- 

free methods. These meshfree methods offer an alternative by cir- 

cumventing the problems of conventional CFD methods either fully 

or partially. Instead of relying on elements or mesh, the meshfree 

methods use only the nodal coordinate information without the 

associated connectivity. 

A number of meshfree methods are available in literature. 

These include the smooth particle hydrodynamics (SPH) [1] , 
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reproducing kernel particle method (RPKM) [2] , element-free 

Galerkin (EFG) method [3] , the local Petrov–Galerkin method [4] , 

radial basic function (RBF) method [5,6] , finite pointset method etc. 

In the present work, the Least Square Finite Difference (LSFD) is 

considered which was originally developed by Ding et al. [7] . The 

Least Square Finite Difference (LSFD), which is derived from the 

multi-dimensional Taylor series expansion, provides a more gen- 

eral discretization method for multi-dimensional geometries. 

2. Development of the Least Square Finite Difference method 

(LSFD) 

The LSFD method is based on the use of a weighted least 

square approximation procedure together with a Taylor series ex- 

pansion of the unknown function. Multi-dimensional Taylor series 

expansion can be employed to approximate the unknown function 

within a local support of reference node. 

http://dx.doi.org/10.1016/j.compfluid.2016.02.017 

0045-7930/© 2016 Elsevier Ltd. All rights reserved. 

http://dx.doi.org/10.1016/j.compfluid.2016.02.017
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compfluid
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compfluid.2016.02.017&domain=pdf
mailto:agnibis@yahoo.co.in
http://dx.doi.org/10.1016/j.compfluid.2016.02.017


38 M.P. Borthakur, A. Biswas / Computers and Fluids 130 (2016) 37–48 

Fig. 1. Two dimensional node distribution [8] . 

For approximating derivatives up to second order, the truncated 

Taylor series expansion about i can be expressed as 
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where j ∈ {1,2,…, N } are the neighbor nodes of i and ( �x j , �y j ) de- 

notes the distance from the reference node i to neighbor node j as 

shown in Fig. 1. 

The derivative at point i is determined by minimizing the sum 

of all the squared residuals i.e. Euclidean norm of error vector for 

all neighboring points of i under consideration known as support 

points) with respect to the five derivative terms defined as 
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The square error in Eq. (2) is well-known [9] to be minimized 

under the condition 

S T W � f = ( S T W S) df (3) 

where �f is a N × 1 array, N being the number of neighbor nodes. 
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and D is the P × 1 array, P being the number of derivative terms. 
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and W is the diagonal weight matrix. 

W = diag [ w 1 w 2 .... w N−1 w N ] (7) 

Many weight functions are available in literature but according 

to [7] , the following function provides slightly better accuracy than 

other commonly used weight functions and is hence applied in this 

work: 

w j = 

√ 

4 

π
(1 − r 2 j ) 
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r j is the distance of the neighbor node from reference node i . 

Thus, the derivative array is given by 

df = C� f (9) 

where 

C = ( S T W S) −1 S T W (10) 

C is a geometric matrix depending only on the nodal coordi- 

nates and can be calculated during the preprocessor stage. 

3. Implementation considerations 

3.1. Neighbor node selection 

As mentioned in the previous section, the LSFD method approx- 

imates the derivatives at a node by considering Taylor series ex- 

pansion on a set of neighbor or supporting nodes. Therefore, the 

selection of the neighbor nodes is crucial for the performance of 

the method. There exist different criteria for the selection of neigh- 

bor nodes in literature. In this work, a nearest neighbor search 

will be applied. Each local subdomain will contain a pre-specified 

amount of nearest neighbors instead of selecting domains of con- 

stant radius. The nearest neighbor search criterion will ensure that 

the local subdomains in regions of higher nodal density will en- 

compass a smaller area than that of a coarse nodal distribution. 

The objective is therefore, for every single node in the domain, to 

find its adjacent nodes in terms of Euclidean distance. 

3.2. Neumann boundary condition enforcement 

A popular method that has been used by several authors 

[ 10 –12 ] to enforce a Neumann boundary condition has been the 

use of ghost points. However this method produces inaccurate re- 

sults especially for irregular nodal distribution [13] . Due to this 

shortcoming, a new method called the Hermite Taylor Least Square 

(HTLS) method is used. 

When a support domain contains nodes that belong to a bound- 

ary with a specified Neumann boundary condition, a specialized 

form of the Taylor series least squares method can be formulated 

[13] . The new formulation takes advantage of the fact that both 

function values and function derivatives are known at the bound- 

ary nodes. Including this additional data results in a more accurate 

approximation of derivatives at the reference node. 

If there is a subset of N b Neumann boundary nodes within the 

N supporting nodes of the support domain for reference node i , 

the truncated Taylor series for the first x and y derivatives at ( x j , 

y j ), j ∈ {1,2,…, N b } can be expressed as 
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The gradient of the potential in the normal direction ∇f j �n j 
can be expressed in terms of the Taylor series by taking the dot 
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