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a b s t r a c t

The simulation of fluid flow and transport in heterogeneous and anisotropic oil and gas reservoirs poses a

great challenge from the numerical point of view, due to the modeling of complex depositional environ-

ments, including inclined laminated layers, channels, fractures and faults and the modeling of deviated

wells, making it difficult to build and handle the Reservoir Characterization Process (RCM), particularly by

using structured meshes (cartesian or corner point), which is the current pattern in petroleum reservoir

simulators. Under certain hypotheses, the mathematical model that describes the fluid flow in petroleum

reservoirs includes an elliptic equation with heterogeneous, possibly discontinuous, coefficients for the

pressure field and a non-linear hyperbolic equation for the saturation field. In the present paper, these

equations are solved via an Implicit Pressure Explicit Saturation (IMPES) procedure. To solve these equa-

tions, we use a full cell-centered finite volume formulation. The pressure equation is discretized by a

non-orthodox Multipoint Flux Approximation Method with a Diamond type stencil (MPFA-D) and used

for the first time for the solution of two-phase flow problems in heterogeneous porous media. It is very

robust and capable of reproducing piecewise linear solutions exactly by means of a linear preserving

interpolation with explicit weights that avoids the solution of locally defined systems of equations. For

the solution of the saturation equation, we use a Monotone Upstream Centered Scheme for Conserva-

tion Laws (MUSCL) method based on a gradient reconstruction obtained by a least square technique in

which monotonicity is reinforced by an appropriate slope limiter. The method can be used with general

polygonal meshes, even though we restrict ourselves to conforming triangular and quadrilateral grids. In

order to validate and show the robustness of our formulation, we solve some problems including het-

erogeneous and anisotropic reservoirs and displacements with high mobility ratios. Our results compare

well with others found in literature.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The numerical simulation and consequent prediction of

fluid flow patterns and transport in highly heterogeneous and

anisotropic oil and gas reservoirs pose a great challenge for numer-

ical algorithms, due to the modeling of complex depositional envi-

ronments, including inclined laminated layers, channels, fractures

and faults and the modeling of deviated wells, making it difficult

to build and handle the whole Reservoir Characterization Process

(RCM) [1], particularly by using structured meshes (Cartesian or
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corner point), which is the current standard in petroleum indus-

try [2–9]. In complex petroleum reservoirs, heterogeneities range

from pore size to reservoir scale [1,10] and rock properties, such

as porosity and permeability can vary significantly throughout the

reservoir. Under certain simplifying assumptions, the mathematical

model that describes the fluid flow in petroleum reservoirs com-

prises an elliptic equation with a non-homogeneous and eventu-

ally discontinuous diffusion coefficient (i.e., permeability) for the

pressure field and a non-linear hyperbolic equation for the satu-

ration field which are weakly or strongly coupled by the velocity

field depending on the solution procedure utilized.

Commonly, in petroleum reservoir simulators, the elliptic term

(diffusive flux) associated to the pressure discretization is approx-

imated by a simple Two Point Flux Approximation (TPFA) method
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and the hyperbolic term (advective flux) associated to the satura-

tion discretization is approximated via a simple First Order Upwind

(FOU) method [7,8,11–13]. Even though this combined strategy is

simple to implement and highly computationally efficient, it has

certain drawbacks related to the inability of the TPFA method to

properly discretize complex geometries that emerge from the geo-

logical modeling of the faulted and inclined structure of the reser-

voir and the anisotropic numerical diffusion introduced by the FOU

method, which, not only, produces excessive spreading of the sat-

uration fronts but is also prone to the so called Grid Orientation

Effect (GOE) which represents a strong dependence of the numeri-

cal solution on the orientation of grid lines [12,14–19]. In order to

face these problems, many strategies involving different combina-

tions of numerical methods were presented in literature. Among

the mass conservative schemes, we can quote the Mixed Finite

Element (MFE) method, the Discontinuous Galerkin (DG) method

[11,20,21] and the Multipoint Flux Approximation (MPFA) schemes

[2–4,7]. Usually, in the MFE, pressure and velocities are approx-

imated simultaneously with the same order of accuracy and the

saturation equation is solved by means of some shock capturing

method [8,22]. On the other hand, DG methods have been used to

solve both: the pressure equation, by means of symmetric or non-

symmetric interior penalty methods; and the saturation equation,

together with some form of higher order upwinding and limiting

to ensure monotonicity [11,20,21]. Recently, classical MPFA meth-

ods coupled with higher order upwind or central schemes have

been used to simulate two phase flows in porous media [18,23]. In

[10] a node centered multipoint flux approximation method with

full pressure support (MPFA-FPS) was used together with a higher

order locally conservative and non-split convective scheme to sim-

ulate oil and water displacements in porous media. Due to the

truly multidimensional and higher order character of these meth-

ods, they proved to be very robust for various test problems involv-

ing full tensor and heterogeneous permeability fields in structured

and unstructured quadrilateral meshes.

In this context, in the present paper we devise a full cell-

centered finite volume procedure to solve both, the pressure and

the saturation equations, via an IMplicit Pressure-Explicit Satura-

tion (IMPES) technique which was originally devised by Sheldon

and Cardwell (1959) and Stone and Gardner (1961) and has being

extensively used in practice for moderate complexity multiphase

flow problems in petroleum reservoirs [5,8,14,18,24–28]. In this

technique, a sequential time stepping procedure is used to split the

computation of the pressure from the saturation fields. In the clas-

sical IMPES approach, starting from an initial saturation distribu-

tion, the pressure equation is solved implicitly and then, the total

velocity is calculated explicitly from this pressure field. Following,

the velocity field is used to compute the advective fluxes in the

saturation equation, which is solved explicitly, and the process is

repeated until the end of the simulation.

In our work, the pressure equation is discretized by a non-

orthodox cell-centered Multipoint Flux Approximation Method

with a Diamond type stencil (MPFA-D) which was originally de-

vised by [29] to solve diffusion problems in heterogeneous and

anisotropic media using polygonal meshes. In this scheme, the flux

on each control volume face (edge in 2-D) is explicitly expressed

by two cell-centered unknowns defined on the control volumes

(CVs) sharing that edge and two auxiliary unknowns defined at the

two edge endpoints. As the scheme is cell-centered, vertex vari-

ables are expressed as weighted linear combinations of the neigh-

boring cell-centered unknowns in order to reduce the scheme to

a completely cell-centered one. As pointed out by [29], there are

different ways to compute the weights for the vertex unknowns,

for instance, by using Taylor expansions [30], by a straightfor-

ward bilinear interpolation [31] or its modification by the finite

point method [32]. In the method of [29] the weights are either

discontinuity or mesh topology dependent as in some of the other

previous methods and can be used even for full tensor problems.

The derivation of the scheme and of these weights satisfy the

linearity preserving criterion, which requires that a discretization

scheme should be exact on piecewise linear solutions [5,6,29]. In

the present paper, we adapt the method for the solution of two-

phase flows in petroleum reservoirs by computing the total mobil-

ity term on the control surface as a function of the mobilities of

the CVs that share at least a node with the surface. To solve the

non-linear saturation equation we use a modified version of the

second order upwind type, vertex centered finite volume method

devised by [33] adapted to our cell-centered method. Second or-

der accuracy is obtained via a least square gradient reconstruc-

tion and monotonicity is enforced by using slope limiters follow-

ing a MUSCL strategy [34–38]. In the present paper, we restrict

ourselves to triangular and quadrilateral meshes, but our method

can be used with general polygonal meshes as the gradient recon-

struction and the monotonicity constraints are independent of the

shapes of the CVs. In order to validate our formulation, i.e., the

use of the MPFA-D for the pressure field, combined with the high

order MUSCL-type finite volume method (HOMFV) for the satura-

tion one, we simulate oil–water displacements with moderate or

high mobility ratios, in heterogeneous and anisotropic (full tensor)

petroleum reservoirs using structured and unstructured triangular

and quadrilateral meshes.

2. Mathematical formulation

In this section, we briefly describe the governing equations for

the two-phase flow of oil and water in petroleum reservoirs. We

assume, without loss of generality, that the fluid and rock are both

incompressible, that the flow is isothermal and we neglect the cap-

illary pressure and gravitational term. We will use a segregated

formulation in which the basic equations are obtained from the

proper combination of the conservation of mass and the Darcy’s

Law, which can be written for phases i =o (oil), w (water), respec-

tively, as:

∂(φρiSi)

∂t
= −∇ · (ρi�vi) + qi (1)

�vi = −λiK
∼

∇pi, i = o, w (2)

In Eqs. (1) and (2), φ is the rock porosity, ρ i and Si, represent,

respectively, the density and the saturation of phase i, i.e., the frac-

tion of the pore volume occupied by phase i, �vi, is the phase ve-

locity, which is given by Darcy’s law and qi denotes source or sink

terms (e.g., injection or production wells) and K
∼

is the absolute

rock permeability tensor that satisfies the ellipticity condition and

the fluid mobility is given by λi = kri/μi, where μi and kri(Si) rep-

resent the viscosity and the relative permeability of phase i, re-

spectively. We also assume that the reservoir rock is fully saturated

by oil and water. Due to this last assumption, we can write:

So + Sw = 1 (3)

By using Eqs. (1)–(3) and after some algebraic manipulation

[8,13,14,25,39], we can write the elliptic pressure equation, as:

∇ · �v = Q with �v = −λK
∼

∇p (4)

In which the total mobility is λ = λw + λo.

In Eq. (4) the total fluid velocity is denoted by �v = �vw + �vo.

The total fluid injection or production specific rate is denoted by

Q = Qw + Qo with Qi = qi/ρi. Again, by using Eqs. (1)–(3) and af-

ter some algebraic manipulation [8,13,14,25,39], we can write the

hyperbolic saturation equation, as:

φ
∂Sw

∂t
= −∇ · �F (Sw) + Qw (5)
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