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a b s t r a c t

A computationally-efficient method based on Kalman filtering is introduced to capture “on the fly” the low-

frequency (or very large-scale) patterns of a turbulent flow in a large-eddy simulation (LES). This method may

be viewed as an adaptive exponential smoothing in time with a varying cut-off frequency that adjusts itself

automatically to the local rate of turbulence of the simulated flow. It formulates as a recursive algorithm,

which requires only few arithmetic operations per time step and has very low memory usage. In practice,

this smoothing algorithm is used in LES to evaluate the low-frequency component of the rate of strain, and

implement a shear-improved variant of the Smagrosinky’s subgrid-scale viscosity. Such approach is primar-

ily devoted to the simulation of turbulent flows that develop large-scale unsteadiness associated with strong

shear variations. As a severe test case, the flow past a circular cylinder at Reynolds number ReD = 4.7 × 104

(in the subcritical turbulent regime) is examined in details. Aerodynamic and aeroacoustic features including

spectral analysis of the velocity and the far-field pressure are found in good agreement with various experi-

mental data. The Kalman filter suitably captures the pulsating behavior of the flow and provides meaningful

information about the large-scale dynamics. Finally, the robustness of the method is assessed by varying the

parameters entering in the calibration of the Kalman filter.

© 2015 Elsevier Ltd. All rights reserved.

1. Motivations

The numerical simulation of turbulent flows in geometries of en-

gineering interest can be accomplished with various levels of approx-

imation, yielding a more or less detailed representation of the flow.

The so-called direct simulation, in which the equations of motion are

discretized and solved directly, is obviously the most straightforward

approach. If the mesh is sufficiently fine to resolve even the small-

est eddies, and if the numerical scheme limits dispersion and dissi-

pation errors, this method yields an accurate time-dependent repre-

sentation of the flow [1]. Unfortunately, its applicability is limited to

simple geometries at relatively low Reynolds numbers. The reason is

twofold. First, the drawback of using highly accurate schemes is un-

avoidably a lack of flexibility to handle complex geometries and gen-

eral boundary conditions. Second, the resolution of turbulent fluid

motions at high Reynolds numbers requires a prohibitive number of

grid points, especially in near-wall regions where thin vortical struc-

tures develop [2]. Therefore, in practical situations, the direct ap-

proach is often abandoned in favor of approximate, but numerically

tractable, computations.
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In a large-eddy simulation, usually referred to as LES in the litera-

ture, the grid resolution is deliberately reduced so that only the large-

scale motions of the fluid are captured numerically. This is physically

justifiable since the large-sized eddies contain most of the kinetic en-

ergy of the flow, and their strengths make them the efficient carriers

of mass, momentum, heat, etc. On the contrary, small-sized eddies

are mainly responsible for dissipation and contribute little to trans-

port and mixing. The large-scale dynamics is solution of the original

flow equations, e.g. the Navier–Stokes equations, supplemented by an

unknown term accounting for the stress exerted by the unresolved

subgrid-scale motions on the simulated flow. A common thread is to

assume that this stress is essentially responsible for a diffusive trans-

port of fluid momentum at grid scale, which in turn calls for the mod-

eling of a subgrid-scale viscosity [3]. This viscosity depends on space

and time, and is related to the (subgrid-scale) turbulent dynamics.

In the context of engineering flows, which may experience strong

unsteady events such as boundary-layer separation, vortex shedding

or disturbances induced by a moving body, e.g. a turbine blade, the

modeling of the subgrid-scale viscosity is recognized to be a diffi-

cult problem. Strong unsteadiness generally occurs at low frequen-

cies in comparison with turbulent fluctuations in the bulk and is of-

ten associated with large amplitudes of the rate of strain (or shear).

In this respect, a refinement of the Smagorinsky’s model [4] has been
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proposed recently. Namely, the so-called shear-improved Smagorin-

sky’s model (SISM) [5] accounts explicitly for the mean part (in

the sense of statistical average) of the rate of strain to correct the

Smagorinsky’s viscosity. The resulting viscosity expresses as

νsgs(x, t) = (Cs�(x))2(|S(x, t)| − S(x, t)), (1)

where Cs = 0.18 is the standard Smagorinsky constant [6], �(x) is the

local grid spacing (at position x) and
∣∣S(x, t)

∣∣ is the norm of the re-

solved rate-of-strain tensor:
∣∣S∣∣ =

√
2

∑
i j Si jSi j . In the notation, the

overline recalls that the flow quantity is discretized at a grid reso-

lution that may be coarse compared to the size of the smallest tur-

bulent eddies. In Eq. (1), the correcting term to the Smagorinsky’s

viscosity is S(x, t) = |̃Sx, t)|, where the tilde refers typically to a low-

pass filtering (as discussed below). Interestingly, the SISM does not

call for any adjustable parameter besides Cs = 0.18, which is fixed for

all flows. There is no need for an ad-hoc damping function nor any

kind of dynamic adjustment in near-wall regions [7]. The simplicity

and manageability of the original Smagorinsky’s model are therefore

preserved.

The theoretical basis of the SISM was put forward on account

of numerical and experimental studies on shear effects in non-

homogeneous turbulence [9].

In the context of subgrid-scale modeling, it shares obvious simi-

larities with the model originally introduced by Schumann in 1975,

which relies on a two-part eddy-viscosity accounting for the in-

terplay between the nonlinear energy cascade present in isotropic

turbulence and mean-shear effects associated with anisotropy [10].

However, the SISM clearly differs from Schumann’s proposal. This

later requires an empirical prescription for the “inhomogeneous

eddy-viscosity”, whereas the subgrid-scale viscosity is explicit in the

SISM and arises naturally from the scale-by-scale energy budget es-

tablished from the Navier–Stokes equations [5]. Another important

point is that the SISM cannot be obtained by just simplifying Schu-

mann’s formulation. Let us note that variants of Schumann’s model

have also been proposed by Moin and Kim in 1982 [11] and followed

by Horuiti in 1987 [12], and one can add the anisotropic version in-

troduced by Sullivan et al. in 1994 [13].

Including anisotropy effects in the SGS modeling has been ad-

dressed in many different ways. The SISM relies on a decomposition

of the resolved flow into a statistically-averaged part and a fluctuat-

ing part. An alternative decomposition into a large-scale and a small-

scale component has been extensively explored. This refers for in-

stance to the variational multi-scale (VMS) method, which originates

with the works of Temam on multi-level methods [14] and has been

developed by Hughes et al. [15] and many others thereafter (see [16]

for a review). This decomposition arises from the motivation to build

an eddy-viscosity on either the small-scale or the large-scale part

of the velocity field, and make it act on the small-scale part of the

resolved motions only. One can also mention the filtered structure-

function model introduced by Ducros et al. [17] that consists of re-

moving the large-scale fluctuations of the velocity field before com-

puting its second-order structure function.

An important requirement of the SISM is to evaluate the mean

component of the rate of strain (in the sense of ensemble average) as

the simulation progresses. In practice, ensemble average may be ap-

proximated by space average over directions of homogeneity, when-

ever it is possible, e.g. in a plane-channel flow. When it is not, time

average may be used instead if the flow is statistically time-invariant.

However, many engineering flows do not allow such approximations

and an alternative estimation must be found, which is the issue ad-

dressed in the present work. Our proposal is to assume that the

mean flow may be approximated by the low-frequency component of

the velocity field, including a possible (quasi-)deterministic unsteadi-

ness, and that the turbulent component adds itself to this “unsteady”

mean (see [8] for more details). An original method based on Kalman

filtering in the time domain is investigated. Importantly, this filter

corrects its cut-off frequency automatically according to the local tur-

bulent rate of the flow. It is therefore well-adapted to strongly inho-

mogeneous and unsteady flows. This method is fully local in space

and applies independently at each grid point. It is thus convenient to

treat complex-geometry flows, possibly integrated on unstructured

grids. The physical fundamentals of this method have already been

presented in a companion paper [8], the focus is here on computa-

tional and validation aspects, including a spectral analysis.

2. Kalman filtering adapted to turbulent flows

2.1. Exponential smoothing as baseline method

A simple way to extract the low-frequency component of a digital

signal is to apply a weighted moving average (in time) to this signal.

In the context of computational fluid dynamics, this moving average

should be applied at each grid point and every time step, making the

cost of this operation highly selective. The simplest solution is cer-

tainly to consider an exponentially-weighted moving average, or ex-

ponential smoothing [18,19]. See [20–22] for existing applications of

exponential smoothing in the context of LES. The main advantage of

the exponential smoothing is that it can be formulated in a very con-

venient recursive manner:

ũ
(n+1) = (1 − α) · ũ

(n) + α · u(n+1)
, (2)

where ũ
(n)

denotes the smoothed velocity (at time n) whereas ū(n)

is the instantaneous velocity. The smoothing factor 0 < α < 1 con-

trols the weights of the past observations in the average (a higher

α discounts older observations faster). The exponential smoothing is

formally equivalent to a first-order low-pass filter with a cut-off fre-

quency fc related to the smoothing factor by

α � 2π fc�t√
3

≈ 3.628 fc · �t, (3)

where �t is the time step of the velocity signal (see [8] for a proof).

In the exponential smoothing, the key point is to update at each

time step the smoothed quantity (here the velocity) by taking into

account the new data point. It is computationally efficient since it re-

quires only the storage of the (previous) smoothed quantity. Also, the

initialization of the algorithm is very simple: ũ
(0) = u

(0)
. In the con-

text of complex turbulent flows, an obvious limitation of this method

is to select a unique physically-relevant cut-off frequency for the

whole flow. In practice, the smoothing factor is expected to vary in

space and time according to the large-scale inhomogeneity and un-

steadiness of the flow. In the following, it is shown that this limitation

can be alleviated by considering an adaptive exponential smoothing,

in which the smoothing factor α(x, t) adjusts itself automatically ac-

cording to the local turbulent rate of the velocity field. This proce-

dure is made possible by means of an adaptive Kalman filter. Inte-

grating Kalman filtering in the SISM therefore allows us to extend the

scope of this sudgrid-scale model to the LES of inhomogeneous and

unsteady turbulent flows.

2.2. Adaptive exponential smoothing based on Kalman filtering

A Kalman filter estimates the state of a dynamical system, here

the low-frequency component of the velocity field, from a series of

observations. Kalman filtering is a major topic in control theory in

engineering science and is known to be rather efficient [23,24]. As for

the exponential smoothing, an important feature of a Kalman filter

is its formulation as a recursive estimator. The updated state is com-

puted from the previous state and the current observation only. In

our case, the update is made according to Eq. (2) but with a smooth-

ing factor (noted K) that is now inferred dynamically from the lo-

cal fluctuation of the signal. This inference is performed on the basis
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