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a b s t r a c t

This study focuses on the development of frequency-based Reynolds-Averaged Navier–Stokes methods

in the presence of harmonic excitations. Two different methodologies are proposed to alleviate the

problem of high computational costs of conventional time-domain time-nonlinear approaches due

to the capture of the long transients. A time-linearized approach is adopted using either the simple

frozen-turbulence-scales assumption or the full linearization of the turbulence model. In order to account

for nonlinear coupling between harmonics, a flexible time-domain Fourier-based solver is derived from

a Reynolds-Averaged Navier–Stokes solver based on a local dual time stepping technique. Various flow

regimes, involving forced shock-wave oscillations due to an elliptical cam placed at the nozzle exit

and forced vibrations of test objects, are investigated to assess the robustness and the computational

efficiency of the two frequency-based approaches in the presence of recirculating flows.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The prediction of the flutter onset speed is of crucial im-

portance in the field of turbomachinery aeroelasticity. The corre-

sponding loss of dynamic stability, which results in unbounded

vibrations of the structure, may lead to dramatic mechanical fail-

ures. Transonic stall flutter can be accurately computed with con-

ventional time-nonlinear Reynolds-Averaged Navier–Stokes (rans)

solvers combined with advanced turbulence closures. However,

such time-domain formulations exhibit prohibitive computational

costs due to the long transients required to obtain a time-

periodic solution. During the last decades, many authors focused

on frequency-domain based methods as an alternative to the solu-

tion of the unsteady Navier–Stokes equations in time-domain, such

as the Time-Linearized rans (lrans) and the Time Harmonic Bal-

ance rans (thb-rans) approaches. The former assumes that the un-

steady flow can be considered as a small time-harmonic perturba-

tion superimposed on an underlying steady flow while the latter
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is based on the Fourier decomposition of the flow variables and

residuals.

The two dimensional lrans equations were successfully solved

by Clark [27,28,62] for aerodynamic damping and stall flutter com-

putations. Then, numerous three-dimensional lrans solvers were

developed for turbomachinery flutter [15,17,19,20,60,66,75,80] and

aircraft aeroelasticity [30,68,73]. To this end, different approaches

were proposed to deal with the unsteady perturbations in the tur-

bulent stresses, such as the frozen eddy-viscosity assumption [25],

the frozen-turbulence-scales approximation [21], the linearized

form of the one equation Spalart–Allmaras model [15,28,80] or

the full linearization of the k − ωT model [60]. However, these

approaches may suffer from a lack of robustness due to the

unbounded amplification of the perturbation variables in pseudo-

time [1,15,27,30,31,60]. The relationship between the numerical in-

stabilities and small perturbations of the base flow field was high-

lighted by Campobasso and Giles [15] for transonic viscous flows in

turbomachines. In particular, complex conjugate pairs of outliers,

which are responsible for the exponential growth in pseudo-time,

were related to flow phenomena involving separation bubbles

[15]. Stabilization techniques of the linear code were successfully

developed by implementing a GMRES algorithm [15] or using a

recursive projection method [16,17]. An alternative to the use of

stabilization approaches is to employ a direct solver for the solu-

tion of the linearized Euler or Navier–Stokes equations [1,22,77].
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On the other hand, He [55,56] and later He and Ning [59,74]

proposed to account for nonlinear coupling effects between the

time-averaged flow and the first harmonic unsteady perturbation

for the computation of the flow response around oscillating blades.

This approach was extended to higher harmonics by Hall et al. [53]

to compute time-periodic flows in cascades by solving the cou-

pled set of equations related to each harmonic of the Fourier de-

composition in the time-domain. The thb-rans method was found

to be very efficient in the computation of single frequency domi-

nated flows [30,47,49,50,82,83,85] and unsteady flows in the pres-

ence of multiple frequencies [32,34,58,84,94]. Recently, a multi-

frequency thb-rans approach with non-uniform time sampling

was employed by Sicot et al. [52,84] for robust and accurate aeroe-

lastic computations of a counter-rotating fan. A thorough conver-

gence analysis of Fourier-based time methods for turbomachin-

ery wake passing problems was presented in [46]. Extensive re-

view of the frequency-domain approach are given in [57,71]. One of

major advantages of the harmonic balance method over its time-

linearized counterpart, is that it can be developed within exist-

ing implicit steady flow solver codes with minimum coding efforts

[6,85,91,97]. Therefore, such an approach was recently deployed

for a wide range of applications in aeronautical and aerospace

engineering, like for instance, turbomachinery blade rows inter-

actions [35–37,63,83] and flutter [10,33,89], rotorcraft applications

[26,64,69,98], wind turbine [14,61], and aircraft aeroelasticity [90].

A detailed comparative study between lrans and thb-rans was

performed by Dufour et al. [30] for a Naca64A006 airfoil with a

75% chord oscillating flap. Quite an accurate description of the

unsteady field were obtained using the thb-rans approach with

two harmonics for the transonic recirculating case with a speed-

up about three compare to the urans solution. On the contrary

the lrans with pseudo-time failed to converge. The linear and

the nonlinear frequency approaches were compared in the con-

text of Euler flows by Da Ronch et al. [79] and by Woodgate

and Barakos [98] for Navier–Stokes computations of rotor

flows.

In this work, we perform a comparative study between lrans

and thb-rans approaches, along the lines of Dufour et al. [30],

for the computation of forced oscillations in a transonic nozzle.

New advances are proposed to circumvent the problem of lack

of robustness and accuracy in the presence of separated flows.

First, we solve the linear system resulting from the discretiza-

tion of the lrans equations by means of Krylov’s algorithms with-

out pseudo-time-marching in order to avoid convergence prob-

lems. The unsteady turbulent stresses are computed by means of

a frozen turbulence scale approach or by using a derived turbu-

lence model. Second, an efficient time-domain Fourier-based solver

with Reynolds-stress closure [40,41,44] is developed from a steady

Reynolds-Averaged Navier–Stokes solver [45,93]. In order to val-

idate our numerical results, we consider the experimental noz-

zle facility at the Chair of Heat and Power Technology of KTH

[3–5,11,13,95], which is based on a simplified aeroelastic test case

bringing into focus the area of interaction between an oscillating

shock wave and a turbulent boundary layer. The unsteady flow re-

sponse is computed for back-pressure fluctuations due to an el-

liptical cam placed downstream of the test section and forced

vibrations for excitation frequencies ranging from 100 Hz up to

500 Hz.

The layout of the paper is as follows: Section 2 presents the

computational framework and the development of the frequency-

domain based rans numerical solvers. The different formulations

of the unsteady flow problem are applied to time-periodic sepa-

rated flows in Section 3. Finally, Section 4 draws the concluding

remarks.

2. Governing equations and computational methods

2.1. Computational framework

In this work, the unsteady flow due to deterministic forcing is

modeled using the compressible Favre–Reynolds averaged Navier–

Stokes equations

∂w

∂t
+ div

[
�FC(w) − �FV (w)

]
+ S(w) = 0 (1)

where w denotes the vector of the conservative variables, �FC and
�FV are the convective and viscous fluxes respectively and S rep-

resents the vector of source terms due to turbulence closure. The

computational framework which will be used to establish both

lrans and thb-rans formulations is based on the structured multi

block cell-vertex finite volume solver developed by Vallet [93]

with near-wall Reynolds-stress closure [40,41,44,45]. The governing

equations are solved using a van Leer flux-vector-splitting scheme

with third order muscl interpolations and van Albada limiters

[42,43,45]. A local dual time stepping (ltds) procedure is employed

to improve the convergence properties of the steady flow solution

in the presence of separated flows, resulting in dramatic reduc-

tion of limit-cycle-oscillations due to the use of approximate Ja-

cobian matrices and adi factorization [23]. An implicit O(�t2) dual

time stepping technique is used to solve the unsteady rans equa-

tions in time-domain [24]. This time-nonlinear approach, namely

referred as tnl-rans hereafter, will be used for validation pur-

pose of the frequency-domain solvers developed in Sections 2.2

and 2.3.

2.2. Time-linearized Navier–Stokes equations

The first step in the derivation of the time-linearized time-

harmonic equations is to consider that the unsteady flow can be

modeled as a steady flow 0w(�x) plus a small harmonic pertur-

bation 1w(�x, t). Therefore the conservative variables may be ex-

pressed as [54]

w(�x, t) = 0w(�x) + 1w(�x, t) = 0w(�x) + �
[

1ŵ(�x)eiωt
]

(2)

where 1ŵ(�x) represents the harmonics of the unknowns and ω =
2π f is the pulsation related to the perturbation frequency f. Next,

the decomposition given by (2) is introduced into the governing

equations (Eq. (1)). Collecting the zero and first order terms and

neglecting the high order terms, gives the following formulation of

the Navier–Stokes equations in the frequency-domain [21]:

div
[

0�FC(w) − 0�FV (w)
]

+ 0S(w) = 0 (3)

iω 1ŵ + div

[
1 �̂FC(0w, 1ŵ) − 1 �̂FV (0w, 1ŵ)

]
+ 1Ŝ(0w, 1ŵ) = 0 (4)

The underlying steady flow recovered by (3) is solved by the nu-

merical method depicted in Section 2.1. The linearization strategy

used to derive the numerical scheme associated to (4) consists in

linearizing the discretized nonlinear equations [21]. To this end, we

compute the Jacobian matrices of the convective and viscous nu-

merical fluxes as thoroughly described in [18,93].

The LRANS solver described in Section 2.2 employs a frozen

turbulence scales approximation. The linearization of turbulent

stresses is addressed by assuming a Boussinesq hypothesis for

the unsteady perturbation of the turbulent stresses [21]. To this

end, the unsteady fluctuations of the turbulence-Reynolds-number

are neglected. As a consequence, the perturbations in the eddy

viscosity is directly related to the perturbation in the molecular

viscosity.
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