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a b s t r a c t

The paper presents a solution algorithm for variable density non-isothermal flows based on a high-order

compact difference approximation combined with the projection method formulated on half-staggered

meshes. In contrast to full-staggered grid arrangement, with the pressure and all scalar variables located

in the cell centers, we shift only the pressure nodes while we keep the scalars and velocity components

in the same nodes. This greatly simplifies the solution procedure as the interpolation between the nodes

takes place only within the projection method. Derivative approximations and interpolation formulas are

discretized using the high-order compact difference schemes up to 10th order in the central nodes and

third/fourth order schemes near domain boundaries. The proposed algorithm is first verified in natural

convection problems in square and rectangular wall bounded cavities for Rayleigh numbers Ra = 3.4 ×
105 and Ra = 1.0 × 106 with maximal density ratio equals nine. The results are compared with published

data for both steady and unsteady flow regimes. The performed simulations reveal that achievement of

accurate results is conditioned by a mesh resolution in thermal boundary layers near the walls, and a

way in which the governing equations are formulated, i.e., the conservative or non-conservative form.

This turns out more important than a formal order of discretization method. Robustness of the proposed

algorithm for the computations of turbulent flow is demonstrated based on the flow in a periodic channel

at Reynolds number Reτ = 200 with density ratio equal to two. In this case the profiles of mean velocity,

temperature and their fluctuations are analyzed and they agree quite well with literature data. In all

presented test cases the obtained pressure fields are smooth and without any oscillations observed when

the collocated meshes are employed.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Low Mach number flows with variable density and temperature

play very important role in various technological devices, e.g. solar

cells, combustion chambers or heat exchangers. Fully or partially

wall-bounded geometries are common in these applications as

their working principles are based on an exchange of heat between

a flowing medium and the walls. Precise numerical solutions of

wall bounded flows usually require dense computational meshes

and compactness of the grid nodes in the wall vicinities. It is best

when such specially prepared meshes are used in combination

with high-order approximation methods. From the point of view

of the accuracy none of the spatial discretization method may

compete with spectral and pseudospectral methods [1]. However,

due to imposed distributions of the grid nodes and limitations
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in prescribing boundary conditions their application is limited

to simple academic problems. High-order compact difference

methods [2] seem much more attractive from this point of view.

Contrary to the spectral methods they allow for easy adaptation

of non-uniform meshes and selection of any type of boundary

conditions. Concerning irregular domains the compact methods

cannot compare with the excellent features of the finite volume

or finite element based methods. Nevertheless, more and more

literature data show that the irregular domains are not a barrier

for the compact methods. In such problems they are implemented

through a combination of domain decomposition approach with

transformation from the physical to computational domains, see

[3–6]. In this paper we limit to simple geometries with computa-

tional grids condensed near the walls and we focus on application

of the compact difference schemes for solutions of low Mach

number flows with large density variations. Two main difficulties

in simulations of this type of flows are: (i) lack of computational

stability caused by density gradients; (ii) calculation of pressure

for which there is no evolution equation nor the equation of state
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as in the case of simulations of compressible flows. In this work,

based on the projection method [7], we develop an algorithm

which is stable for large density ratios and provides accurate

results with pressure field without any spurious oscillations.

There are number of algorithms developed to determine the

pressure field for incompressible and low Mach number flows,

see [7] for an overview of existing approaches, with pressure-

correction algorithms such as SIMPLE type methods and projection

methods being the most popular. These algorithms can be applied

on the so-called collocated or staggered grid arrangements [8]. In

the former approach all velocity components, pressure and scalar

quantities (e.g. temperature, density, concentration) are stored in

the same spatial locations (grid nodes). In the latter, proposed

in 1960s by Harlow and Welch [9], the pressure and scalars are

shifted from the cell corners to the cell centers and moreover the

velocity components are separated and placed on different cell

faces. The well known problem in the use of pressure-correction

algorithms on collocated meshes is an oscillating (checkerboard)

pressure field appearing due to decoupling of the velocity and

pressure [8]. Literature aiming to solve this problem is very exten-

sive. In the field of incompressible flows one should mention Rhie

and Chow interpolation method [10] which by now is regarded as

a cure eliminating the pressure oscillations for low order methods.

Its modified variant [11], suitable for unsteady computations has

been recently adapted also for low Mach number flows [12,13]. For

this class of flows the algorithms based on a pressure-correction

through the projection method were studied in details in [14,15].

There, some improvements for flows with sharp density gradients

were also proposed. However, these improvements were formu-

lated based on a simple second order spatial discretization method

and its extension to high-order approximation methods seems un-

likely.

The staggered grid arrangement has been used in low order fi-

nite difference and finite volume approaches for decades. The only

reason for which it is still being in use seems the same as in

1960s. The staggered grids allow to compute pressure accurately

and without oscillations. Besides of that an advantage of the stag-

gered grids is that the mass conservation is a trivial consequence

of the mesh staggering. In case of the standard second order dis-

cretization method of Harlow and Welch [9] the kinetic energy is

conserved as well. Recently, the staggered meshes were used also

in combination with the high-order compact schemes, both for

compressible [16,17] and incompressible flows [18–24]. Important

disadvantages of the staggered grid arrangement are as follows: (i)

interpolation between the velocity components increases the com-

putational costs; (ii) not all velocity components can be defined

explicitly at the boundaries; (iii) in case of non-uniform and curvi-

linear meshes the co-ordinate transformation has to be performed

at different locations.

The above problems may be overcome applying the so-called

half-staggered meshes introduced in [25]. In this approach the ve-

locity components are stored in the same locations while the pres-

sure nodes are located in the cell centers. Comparing to the fully

staggered grid arrangement the half-staggered grids greatly sim-

plify the numerical codes. They facilitate the solutions of the flow

problems in complicated domains with almost the same effort as

in the case of collocated meshes. As shown in [26–32] the half-

staggered approach ensures strong coupling between the pressure

and velocity field.

In the present paper we combine half-staggered approach for

the pressure with the collocated approach for all remaining vari-

ables. Unlike as in full-staggered grid arrangement, with the pres-

sure and all scalar variables located in the cell centers, we shift

only the pressure nodes while keeping the scalars and velocity

components in the same nodes. Interpolation between the pressure

nodes and velocity locations follows a specific forward–backward

interpolation procedure proposed in [32] where for constant den-

sity flows it revealed accurate and having stabilizing effect. Here

this method is extended to variable density flows and it turns out

that its very good properties are preserved. The proposed algo-

rithm characterizes simplicity typical for the collocated approach

and in the same time it shares the best features of the staggered

meshes. The algorithm is verified in the computations of steady

and unsteady natural convection problems and in the computa-

tions of turbulent flow in a channel. In all these cases the solutions

are stable, accurate and the pressure field is smooth.

2. Governing equations and solution algorithm

2.1. Low Mach number approximation

In this work we consider a low Mach number flow governed

by the so-called low Mach number approximation [33–35] with

acoustic modes removed from the solution. In this approach the

fluid flow is governed by the continuity equation, the Navier–

Stokes equations and the energy equation given as [36,37]:
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where the viscous stress tensor is defined as:

τi j = μ(∂ui/∂x j + ∂uj/∂xi − 2/3δi j∂uk/∂xk)

The symbol ρ stands for the density, ui—velocity components,

p—hydrodynamic pressure, gi—external force (e.g. gravity), T—

temperature, μ—molecular viscosity, κ—heat conductivity, and Cp

is the specific heat. The symbol p0 is the so-called zeroth order

pressure interpreted as the thermodynamic pressure connected to

the temperature through the equation of state:

p0 = ρRT (4)

where R is the gas constant. The thermodynamic pressure should

not be confused with the static hydrodynamic pressure in the

Navier–Stokes equations. p0 is constant in space, and for flows in

open domains it is also assumed constant in time, then it fol-

lows that dp0/dt = 0. In the closed domains, p0 is constant in

space but it varies in time. From the equation of state (4) we have

p0/RT = ρ, which integrated over the flow domain gives:

p0 =
∫

V ρdV∫
V 1/RTdV

= m0∫
V 1/RTdV

(5)

where m0 is the mass of fluid inside domain.

2.2. Predictor–corrector time integration method

The Eqs. (1)–(3) are integrated in time using a predictor–

corrector approach combined with the projection method for

pressure–velocity coupling. We follow the work of [37], where

this algorithm was verified in the computations of variable den-

sity flows using the collocated mesh approach. In the present work

we adapt it for the half-staggered meshes presented schemati-

cally in Fig. 1. As mentioned in the introduction, one of the main

advantages of the present approach over the methods based on

the collocated meshes is treatment of the pressure. Apart of the

checkboard pattern of the pressure field, there are two main prob-

lems when the pressure and velocity nodes are located together.

The first one is related to specification of the boundary condi-

tions for the pressure. They are necessary for discretization of the
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