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a  b  s  t  r  a  c  t

The  flow  conditions  in normal  mode  asymmetric  flow  field-flow  fractionation  are  determined  to approach
the  high  retention  limit  with  the  requirement  d � l � w, where  d is the  particle  diameter,  l the  charac-
teristic  length  of  the  sample  exponential  distribution  and w the  channel  height.  The  optimal  entrance
velocity  is determined  from  the  solute  characteristics,  the channel  geometry  (exponential  to  rectangular)
and  the  membrane  properties,  according  to a model  providing  the  velocity  fields  all  over  the  cell  length.
In addition,  a method  is  proposed  for  in  situ determination  of the channel  height.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Field-flow fractionation is a tool for the separation and charac-
terization of macromolecules and particles [1,2]. Flow field-flow
fractionation (FlFFF) is now mainly used in the asymmetrical
configuration (AsFl-FFF or AF4) in various fields as food analy-
sis [3], recovery of nanoparticles and proteins [4], drug delivery
[5], fractionation of superferrimagnetic multicore nanoparticles
[6], characterization of protein conjugate [7], analysis of starch
[8,9] and liposomes [10]. It has been analyzed by several mod-
els [11–16] and a critical overview appeared recently [17]. Many
publications [14–16,18] have been devoted to improve the inter-
pretation of asymmetric flow field-flow fractionation (AsFl-FFF)
data through a better description of the transverse velocity field
in the domain near the wall where the solute is spread. These
works are based on the assumption of a cross-flow velocity con-
stant implying consequently the estimation of the axial transport
velocity field. However taking into account the pressure variations
in a recent model [19,20] led to an improved description of the
flow rates through the whole system. Two cell designs were pro-
posed to approach more accurate constancy of both velocity fields
all over the length of the cell than in the usual cells. However the
present manuscript proposes an analysis of data using the expres-
sion of both axial through the channel and transversal through the
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membrane velocity fields where we consider the usual cell geome-
tries, i.e. membrane with constant permeability and permeate
compartment of constant large height compared to the sample
channel one. The analysis will examine the two  cases of channel
constant breadth (rectangular) and exponential decreasing breadth
in the direction of axial flow (exponential).

Generally, the membranes are characterized by their molecular
weight cut off, a useful parameter as they must retain the solutes,
macromolecules or particles, in the sample channel. However, in
the present work, the important characteristic is their resistance to
the flow of solvent. The scope is to find the right balance between
axial flow in the channel and transverse flow through the mem-
brane to achieve an efficient separation, in the high retention limit.
The model includes the assumption of the Poiseuille parabolic axial
velocity profile.

2. Theory

2.1. Mean axial velocity and membrane (cross-flow) velocity as a
function of distance

The system under study is schematically represented in Fig. 1,
with the flow rate in the channel qc(z) and the flow rate through the
membrane qm(z). There is no flow through the impermeable upper
wall of the channel of length L. The height of the channel w is very
small with respect to the breadth, which is an exponential function
of the distance (characteristic length s−1):

b(z) = b(0)e−sz (1)
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Fig. 1. Scheme of flow cell of length L with varying channel breadth with distance
z  to entrance. Cross-flow or membrane flow rate qm(z). Sample channel flow rate
qc(z). qin = qc(0). qout = qc(L).

A characteristic length � was previously introduced [19,20]
which, for channel and membrane of same constant breadth, is
the length where the channel and the membrane have the same
hydraulic resistance. It depends on the channel height w and a
characteristic length of the membrane (+ support) �m.

� =
(

w3

�m

)1/2

, L∗ = L

�
(2a)

U =
[

L∗2 +
(

sL

2

)2
]1/2

(2b)

For sake of simplicity, we will assume the pressure in the per-
meate compartment to be constant as in previous works [19,21].
In the writing of equations, the three variables L*, U and sL may
appear; however it should be kept in mind that there are only two
independent variables. The solutions for the mean axial velocity vc

and membrane (cross-flow) velocity vm were given previously (Eqs.
(A11)–(A12) in Annex of [19]) as a function of the reduced distance
Z = z/L.

vc(Z)=vc(0)
U cosh[U(1 − Z)] + (ˇL∗2 − (sL/2)) sinh[U(1 − Z)]

U cosh U + (ˇL∗2 − (sL/2)) sinh U
esLZ/2

(3)

vm(Z)=vm(0)
ˇU cosh[U(1 − Z)]+(ˇ(sL/2)+1) sinh[U(1−Z)]

ˇU cosh U + (ˇ(sL/2) + 1) sinh U
esLZ/2

(4)

In the configuration of a spacer of constant breadth, hence s = 0
and U = L*, these expressions become:

vc(Z) = vc(0)
cosh[L∗(1 − Z)] + ˇL∗ sinh[L∗(1 − Z)]

cosh L∗ + ˇL∗ sinh L∗ (5)

vm(Z) = vm(0)
ˇL∗ cosh[L∗(1 − Z)] + sinh[L∗(1 − Z)]

ˇL∗ cosh L∗ + sinh L∗ (6)

 ̌ is the ratio of the resistance of the circuit after the channel exit
over the channel resistance of a channel of constant breadth b(L). It
is linked to the split of the entrance flow rate into the two exit flow
rates out of the channel and permeate compartments.

2.2. Ratio rq of channel exit flow rate over entrance flow rate.
Connection to parameter ˇ

Let rq be the ratio of channel exit flow rate qc,out over channel
entrance flow rate qc,in.

rq = qc,out

qc,in
= vc(1)

vc(0)
e−sL = rve−sL (7)

From Eq. (3), we deduce:

rq = qc(1)
qc(0)

= U

U cosh U + (ˇL∗2 − (sL/2)) sinh U
exp

(
− sL

2

)
(8)

which becomes in the configuration of a spacer of constant breadth:

rq,s=0 = 1
cosh L∗ + ˇL∗ sinh L∗ (9)

hence

ˇ(sL) = Ue−sL/2r−1
q − (U cosh U − (sL/2) sinh U)

L∗2 sinh U
(10a)

ˇ(0) = r−1
q − cosh L∗

L∗ sinh L∗ (10b)

The condition  ̌ ≥ 0 provides the upper boundary of rq which
corresponds to the same pressure at the exit of the channel and in
the permeate compartment:

rq,max(sL) = Ue−sL/2

U cosh U − (sL/2) sinh U
(11a)

rq,max(0) = 1
cosh L∗ (11b)

Such a domain corresponds to a positive membrane velocity (i.e.
from sample channel to permeate compartment): the condition

 ̌ > 0 is equivalent to the condition vm(1) > 0. Additional resistance
at the exit of permeate compartment would allow to increase
rq above rq,max by increasing pressure in that compartment and
inducing inverse flow through the membrane. Closing of that exit
corresponds indeed to the absolute limit rq = 1, for instance used
recently to determine the void-time [21]. It can be also verified that
the upper limit (Eqs. (11)) is the unity when L* → 0 (impermeable
membrane).

2.3. Elution time in the high retention limit over the full length of
the cell

In the limit of high retention (characteristic length of the solute
exponential distribution from the wall much smaller than the
channel height), elution time is independent of the flow rate but
dependent on the ratio of channel exit over entrance flow rates.
Indeed, an increase of axial flow rate thus of axial velocity is coun-
terbalanced by the transverse displacement of the solute towards
the wall (membrane) induced by the simultaneous increase of the
(cross-flow) membrane velocity (Fig. 2).

The solute velocity averaged over its exponential distribution
from the wall (characteristic length D/vm, assumption of half infi-
nite space: see details on approximations in Appendix A or [15]) is:

Vs(Z) = 6D

w

vc(Z)
vm(Z)

(12)

The elution time over the cell length is:

t =
∫ 1

0

LdZ

Vs(Z)
= wL

6D

∫ 1

0

vm(Z)dZ

vc(Z)
(13)

Let us consider the general case of a breadth b varying with
distance. The conservation of the mass of the incompressible fluid
leads to the relation between membrane transverse velocity vm and
axial channel velocity vc:

vm(Z) = −w

L

(
dvc

dZ
+ 1

b

db

dZ
vc(Z)

)
(14)

which, put in Eq. (13), leads to:

t =
(

w2

6D

)
ln

qc,in

qc,out
(15)
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