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a b s t r a c t

A meshfree Lagrangian method for the fluctuating hydrodynamic equations (FHEs) with fluid-structure

interactions is presented. Brownian motion of the particle is investigated by direct numerical simulation

of the fluctuating hydrodynamic equations. In this framework a bidirectional coupling has been intro-

duced between the fluctuating fluid and the solid object. The force governing the motion of the solid

object is solely due to the surrounding fluid particles. Since a meshfree formulation is used, the method

can be extended to many real applications involving complex fluid flows. A three-dimensional implemen-

tation is presented. In particular, we observe the short and long-time behavior of the velocity autocorre-

lation function (VACF) of Brownian particles and compare it with the analytical expression. Moreover, the

Stokes-Einstein relation is reproduced to ensure the correct long-time behavior of Brownian dynamics.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The dynamics of small rigid particles immersed in a fluid

presents an important and challenging problem, in particular, for

micro/nano scale objects in small scale geometries. The dynamics

of small rigid particle can be influenced by the inherent thermal

fluctuation in the fluid. As one approaches smaller scales, thermal

fluctuations play an essential role in the description of the fluid

flow, see for example [1,2] or [3–5] for more recent works.

This study focuses on Brownian motion of particles immersed

in an incompressible fluid. The average motion of the surround-

ing fluid yields a hydrodynamic force on the particles. Moreover,

a random force is also experienced by the immersed particles due

to the thermal fluctuation in the fluid. The average motion of fluid

is modeled by the Navier–Stokes equations. The thermal fluctua-

tions can either be described on a microscopic level using meth-

ods like molecular dynamics or they can be included in the contin-

uum description of the fluid by additional stochastic fluxes. If one

concentrates on a continuum field description, the resulting equa-

tions of motion for the fluctuating fluid turn out to be stochas-

tic partial differential equations (SPDEs). Such equations, including
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an additional stochastic stress tensor in the Navier-Stokes equa-

tions, have been proposed by Landau and Lifshitz [6]. These equa-

tions are termed the Landau-Lifshitz Navier-Stokes (LLNS) equa-

tions. Initially, the LLNS equations have been presented for fluc-

tuations around an equilibrium state of the system, but later on,

their validity for non-equilibrium systems has also been shown [7]

and verified by molecular simulations [8,9].

Early work in the context of numerical approximation of the

LLNS equations has been done by Garcia et al. [10]. The authors

have developed a simple scheme for the stochastic heat conduction

equation and the linearized one-dimensional LLNS equations. Later

on in [11] a centered scheme based on a finite-volume discretiza-

tion, combined with the third-order Runge–Kutta (RK3) temporal

integrator, has been introduced for the compressible LLNS equa-

tions. Afterward, a systematic approach for the analysis of this grid

based finite-volume approximation for the LLNS equations and re-

lated SPDEs has been discussed by Donev et al. [12]. The extension

of this numerical solver for the LLNS equations to binary mixtures

and staggered schemes for the fluctuating hydrodynamic equations

have been presented in [13,14]. A meshfree Lagrangian formulation

for the 1D LLNS equations for compressible fluids has been pre-

sented by the present authors in [15] and the results have been

compared to the above-mentioned FVM-based RK3 scheme from

[11].

In the context of fluid–structure interactions, Brownian dynam-

ics of immersed particles due to the surrounding fluctuating fluid
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has been studied. in [16,17], using the coupling of the equations of

motion for the particles with the fluctuating hydrodynamic equa-

tions. There, inertia terms in the governing equations have been

neglected and the resultant time independent problem has been

solved with a numerical approach using a fixed grid spatial dis-

cretization. A hybrid Eulerian–Lagrangian approach for the inertial

coupling of point particle with fluctuating compressible fluids has

been presented by Usabiaga et al. [18]. Subsequently, an inertial

coupling method for particles in an incompressible fluctuating fluid

has been reported in [19]. In this work, the equations of motion of

the suspended particle are directly coupled with an incompress-

ible finite-volume solver for the LLNS equations [14]. The authors

have also discussed the Stokes-Einstein relation for fluid-structure

systems at moderate Schmidt number, see [20]. They have mod-

eled the particle through a source term in the momentum equation

and dealt with the full incompressible fluctuating hydrodynamic

equations. In this work, a very efficient coupling of the fluctuating

fluid with particles and a finite-volume approximation of the cou-

pled model have been proposed. The short and long-time behav-

ior of Brownian dynamics has been captured very well. Moreover,

the authors were able to handle a wide range of Schmidt num-

bers in their proposed approximation, which has been a difficult

task for many numerical approximations. An immersed boundary

approach has been reported by Atzberger [21] for fluid-structure

interaction with thermal fluctuations using a grid-based method

and extended to complex geometries in [22]. The fluctuating hy-

drodynamics approach has also been used to analyze the Brownian

motion of nanoparticles in an incompressible fluid, compare Uma

et al. [23].

The present work distinguishes itself from the existing litera-

ture in its approach. An explicit coupling has been used between

the fluctuating fluid and the solid structure, and a numerical ap-

proximation based on a meshfree formulation is used for the LLNS

equations. In general, meshfree methods are an alternative to clas-

sical methods for problems with time-varying fluid domains such

as problems with bodies suspended in a fluid, where one can avoid

re-meshing during the time evolution. We note that a meshfree

method termed “Smoothed dissipative particle dynamics (SDPD)”

has been presented in [24] which incorporates thermal fluctua-

tions. The SDPD is a combination of meshfree smoothed particle

hydrodynamics (SPH) [25] and dissipative particle dynamics (DPD)

[26]. In this approach, the SPH discretization of the Navier-Stokes

equations is performed, and then thermal fluctuations are treated

in the same way as in DPD. On the contrary, the present mesh-

free method is a formulation which is based on a direct numeri-

cal discretization of the stochastic partial differential equation. In

the method the continuum constitutive model with a stochastic

stress tensor is considered, and then a numerical approximation

for the stochastic partial differential equations is employed. An ex-

tension of the SDPD method including the conservation of angu-

lar momentum has been presented by Müller et al. [27] to tackle

fluid problems where angular momentum conservation is essential.

Moreover, we note, that in [24] a rotational friction force govern-

ing particle spin interactions is included. In the present work, we

focus on the Brownian motion of a particle due to inherent fluctu-

ations of the surrounding fluid. Problems, where the conservation

of angular momentum of the fluid particles is required, are left

for future work. The other important distinguishing feature of the

present work, is the use of an incompressible fluid solver instead

of a compressible one as done in [24,28,29]. This allows treating

the Brownian motion of a particle inside a liquid considered in the

present work. We note that a compressible fluid needs to be con-

sidered if one want to focus on the interaction between ultrasound

waves and colloidal particles, as studied by Usabiaga et al. [18]. For

a compressible solver for the fluctuating hydrodynamics equations

in one dimension developed by the present authors we refer to

[15]. The coupling of a suspended particle with a fluctuating com-

pressible fluid is left to future work.

In the present work we consider a fully Lagrangian meshfree

particle method [30,31]. The computational domain is approxi-

mated by moving grid points or particles. We note that a particle

management procedure has to be added in the method, see [30,31]

for details. The suitability of the method, for fluid-structure inter-

action with highly flexible structures in the case of regular flow

fields has been shown by Tiwari et al. [32]. In this paper, we have

extended this meshfree method to the coupling of rigid particles

with fluctuating fluids. For validation, the Brownian motion of par-

ticles has been investigated. We have computed the velocity auto-

correlation function (VACF) of the Brownian particle and compared

it with the theoretical result, as given for example in [33]. A rigid

sphere immersed in the incompressible fluctuating fluid has been

considered to validate the numerical results.

2. Governing equations

We consider a rigid sphere inside an incompressible fluctuat-

ing fluid. Let � ⊂ R
3 denote the entire computational domain in-

cluding both fluid and rigid body, the domain of the rigid body is

denoted by P. A neutrally buoyant rigid particle is considered to

demonstrate the Brownian motion of an immersed particle due to

the inherent fluctuations in the fluid.

The governing equations for the motion of the incompressible

fluctuating fluid are given by

dx

dt
= u in � \ P, (1)

ρ f

du

dt
= ∇ · σ in � \ P, (2)

∇ · u = 0 in � \ P, (3)

where x stands for the position vector of the fluid particle, ρ f de-

notes the density of the fluid. d
dt

= ∂
∂t

+ u.∇ defines the material

derivative. The stress tensor σ is given by

σ = −pI + μ[∇u + (∇u)T ] + S̃, (4)

where p is the pressure and μ is the dynamic viscosity of the

surrounding fluid. S̃ stands for the stochastic stress tensor, which

models the inherent molecular fluctuations in the fluid. The re-

quired stochastic properties of S̃ have been derived by Landau and

Lifshitz [6] in the spirit of a fluctuation-dissipation balance princi-

ple, described as

〈S̃i j(x, t)〉 = 0, (5a)

〈S̃ik(x, t)S̃lm(x
′
, t

′
)〉 = 2kBTμ(δilδkm + δimδkl )

×δ(x − x
′
)δ(t − t

′
), (5b)

where kB is the Boltzmann constant, T is the temperature of the

fluid and 〈〉 is used for the ensemble averages. It has to be noted

that originally these expressions have been derived for compress-

ible fluids, but Eq. (5) is the corresponding approximation for an

incompressible fluids.

We note that the non-linear LLNS equations define an ill-posed

problem. It has to be noticed that the stochastic forcing in the LLNS

equations is the divergence of a white noise process, rather than

the more common external fluctuations modeled through white

noise which have been discussed in [34–36]. S̃ cannot be defined

pointwise either in space and time, therefore ∇ · S̃ cannot be given

a precise mathematical interpretation. Further mathematical prob-

lems arise with the interpretation of the non-linear term u · ∇u.

An approach to deal with these issues is to consider a regulariza-

tion of the stochastic stress tensor, which is typically the source
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