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a b s t r a c t

Motivated by the superior accuracy and better stability of isogeometrically enriched finite elements —

when compared to standard Lagrangian finite elements for problems involving contact and debonding

[15,16] — we extend their applicability to fluid flow problems. Internal and external flow involving in-

compressible Newtonian fluids is analyzed in the framework of the Finite Element Method (FEM). The

concept of isogeometric analysis is applied only at certain localized regions while the bulk fluid is mod-

eled with Lagrangian finite elements. This is achieved by using isogeometrically enriched finite elements

that have a NURBS surface representation on one face while all other basis functions are represented

by Lagrange polynomials. In this manner an enriched representation and analysis of the near surface re-

gion is possible, resulting in an approach that shows similar accuracy as the isogeometric analysis (IGA)

while at the same time incurring similar cost as the standard FEM. This is demonstrated through several

numerical examples involving laminar fluid flow.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Solving the incompressible Navier–Stokes equations presents a

challenging task for researchers analyzing problems involving fluid

dynamics. Because of the inherent non-linearity due to the convec-

tive transport term, obtaining an exact solution for many physical

flow problems is impossible. Hence over the years, several com-

putational algorithms have been proposed to approximately solve

these equations. One of the first solution algorithm for these equa-

tions can be credited to Harlow and Welsch [32] for their MAC grid

method. This was followed by the so-called segregated algorithms

which were based on pressure projection and solution of pressure

Poisson equation [37,46]. Meanwhile, advanced algorithms which

were motivated from compressible flow computations, such as the

artificial compressibility method (ACM), were also applied to in-

compressible flow computations [10,45]. These methods, unlike the

segregated algorithms, have the benefit of yielding a fully coupled

and implicit system of equations for the momentum and mass bal-

ance laws.

Another area where computational modeling of Navier–Stokes

equations has been actively pursued is in the finite element

method (FEM) community. This was motivated by the success

and wide-spread acceptance of FEM in solid/structural mechanics.
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However very early in its development it became apparent that

the standard FEM, also known as the Galerkin method, is suscep-

tible to numerical instabilities when applied to convection domi-

nated problems. These instabilities can only be avoided with in-

tense mesh refinement, which undermines the applicability of the

method for practical usages.

Considerable research has been performed in developing stabi-

lization schemes for FEM that would yield a stable and robust for-

mulation. Early efforts in this regard comprised the so-called up-

winding technique which amounts to adding artificial viscosity to

the convective term. This treatment results in a stable but overly

diffusive solution. Moreover, it leads to a formulation which is in-

herently inconsistent. A consistent approach to obtaining a stabi-

lized finite element formulation for the Navier–Stokes equations

was first presented in [9]. The method, known as the Stream-

line Upwind/Petrov Galerkin (SUPG), consists of adding an element

level integral to the Galerkin formulation. Moreover, this integral

is taken as a function of the residual of the momentum balance

equation, thus resulting in a scheme which is consistent. The in-

troduction of the SUPG formulation led to several developments

in the context of consistently stabilized FEM and over the years

several enhancements and variations have been proposed to this

original idea (see [12,20,30,33,53]). An approach to systematically

obtain various stabilized formulations was proposed in [34]. The

method, known as the variational multiscale method (VMS), pro-

ceeds by separating the flow features into resolved and unresolved

scales in a predetermined manner. Although initially proposed as a
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theoretical justification for the stabilized methods, VMS has since

found wide acceptance for turbulent and complex flow analysis

[2,4,5,27,39].

Apart from modifying the formulation itself, another strategy

to improve a FEM scheme is to enrich the spaces from which

the element basis functions are chosen. In [3] it was demon-

strated that enriching the Galerkin basis functions with bubble

functions, which are only defined in the element interior and van-

ish on the element boundaries, results in a stabilized formulation

for convection-diffusion problems. In fracture mechanics, the ex-

tended finite element method (XFEM) [6] makes use of a strategy

where the elements near the crack are locally enriched with func-

tions that are able to capture a non-smooth field. The concept of

isogeometric analysis (IGA), introduced in [35], uses NURBS and T-

Spline CAD entities to define the element basis instead of classi-

cal Lagrange interpolatory polynomials. The strategy not only pro-

vides a geometrically exact model for computational analysis, but

can also lead to a basis that may ensure higher continuity over the

entire domain as compared to classical FEM.

Interest in improved geometrical representation for boundary

surfaces is not a recent phenomena in FEM. Earlier attempts made

use of the so-called curved finite elements where edges of the

element were enriched with higher-order Lagrange polynomials

to give better approximation of the underlying geometrical sur-

face (see [22,28,58]). Recently, localized surface enriched elements

based on higher-order Lagrange and Hermite polynomials were

used in [47,48] for problems involving adhesion and multibody

contact. The use of Hermite enriched elements renders a fully C1-

continuous surface, however their application is restricted to two-

dimensional domains. The NURBS-enhanced finite element method

(NEFEM) [49] offers another strategy where the boundary of the

domain is mapped to a CAD surface description while the inte-

rior volume is modeled with standard piecewise finite elements.

Unlike traditional FEM and IGA, the isoparametric concept in NE-

FEM is compromised since the NURBS basis is employed only for

the geometrical representation while the solution field is approxi-

mated by standard Lagrange basis. This requires special numerical

integration rules for the enriched elements.

Although higher continuity across the entire computational do-

main is an attractive property, it is however not always desirable

to retain this feature. For fluid flows inherent with evolving inter-

faces, such as moving shocks or multiphase flows, a jump in the

solution field is a physical reality. Having C1- or higher continu-

ity across such interfaces will lead to smearing of the jump in the

solution field. In the context of IGA, this can be remedied by locat-

ing patch boundaries at such interfaces. This however is not triv-

ial for the case of evolving interfaces, such as developing shocks,

where the location of the shock wave is not known a priori. On

the other hand, classical Lagrange finite elements coupled with in-

terface modeling algorithms [25,51,54] present a much more con-

venient remedy. Additionally, higher level of continuity incurs an

adverse effect on the performance of the linear solvers. In [13,14]

it was observed that for the same degrees of freedom and basis or-

der, a significant increment in computational cost is incurred when

the continuity is raised. Such limitations motivate the development

of a strategy where IGA can be employed in conjunction with clas-

sical Lagrangian finite elements.

In this paper, we present a novel strategy for the enrichment

of a finite element based spatial description. We make use of the

isogeometrically enriched finite elements which were first intro-

duced in [15] as a multidimensional extension of the enrichment

technique proposed in [47,48]. Similar to NEFEM, these elements

are also enriched with a CAD based surface description, however

unlike NEFEM the concept of isoparametric finite elements is re-

tained by employing the same enriched basis for the geometry as

well as the solution field. In this way, not only the requirement of

special quadrature rules is circumvented, but the strategy ensures

localized enrichment of the solution space as well. Moreover, since

the enriched elements retain the characteristics of IGA, we demon-

strate their applicability to act as an interface between classical

Lagrangian finite elements and IGA elements. Such a connection

yields a platform where IGA can be applied locally (e.g. near wall

regions in flow problems where gradients are large) while the bulk

domain is modeled with standard finite elements, effectively keep-

ing the overall cost of the formulation at minimum. To the best

of our knowledge such an avenue, where IGA can be blended with

classical finite elements for flow problems, has not been explored

previously.

The applicability of the proposed discretization strategy to fluid

flow problems is explored in this study. As a natural first step lam-

inar flow problems, having either an analytical solution or credible

benchmarking data, are considered. A practical extension to tur-

bulent flow modeling motivates the outlook of this research. The

remainder of this paper is arranged as follows: In Section 2, the

framework for the incompressible fluid flow solver is laid out. A

brief overview of the surface enrichment methodology is given in

Section 3. A strategy for imposition of non-homogeneous Dirichlet

boundary conditions, which — unlike for interpolatory basis — is

non-trivial for NURBS, is also discussed in this section. Numerical

examples are given in Section 4 where the enrichment strategies

are compared with standard FEM while Section 5 concludes this

paper.

2. Framework for the flow model

The theoretical framework for a generalized unsteady incom-

pressible fluid flow model is discussed in this section. It begins

with the description of the governing equations, which describe

the momentum and mass balance for the entire system. The equa-

tions are first expressed in strong form. Their variational (weak)

description follows consequently. The section concludes with a de-

scription of the resulting finite element formulation which is dis-

cussed in conjunction with the stabilization technique used in this

study.

2.1. Governing equations

At a given time t ∈ [0, T], let us consider a spatial domain

B ⊂ R
d, where d is the number of spatial dimensions. The bound-

ary of the domain is given by ∂B such that ∂B = ∂vB ∪ ∂tB, where

∂vB represents the Dirichlet boundary, and ∂tB denotes the Neu-

mann boundary. Then within B, for an incompressible fluid, the

momentum and mass conservation laws dictate that

ρ a − ∇ · σ − ρ b = 0, (1)

∇ · v = 0 . (2)

Here b represents the body forces acting on B while σ denotes

the Cauchy stress tensor. For a Newtonian fluid, σ is given by the

constitutive law

σ = −p I + 2 μ∇sv , (3)

where μ is the dynamic viscosity of the fluid and ∇sv = 1
2 (∇v +

∇vT
) is the symmetric part of the velocity gradient. I is an iden-

tity matrix with dimensions (d × d). Eqs. (1)–(3) constitute the in-

compressible Navier–Stokes equations. The acceleration a of a fluid

particle in Eulerian framework is given as

a = Dv
Dt

= ∂v
∂t

+ v · ∇v . (4)

The model is closed by the following initial and boundary condi-

tions for the velocity and the stress field:

v = vo(x) ∀ x ∈ B at t = 0, (5)
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