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a b s t r a c t

The recently proposed discrete unified gas kinetic scheme (DUGKS) is a finite volume method for mul-

tiscale flow computations with asymptotic preserving property. The solution of the Boltzmann model

equation is directly used for the construction of numerical flux and makes the scheme applicable in all

flow regimes. In previous applications of the DUGKS, structured meshes have been mostly employed,

which may have difficulties for problems with complex geometries. In this paper we will extend the

DUGKS to unstructured meshes, with the implementation of computational fluid dynamics techniques to

the DUGKS. Several test cases, i.e., the cavity flow ranging from continuum to free molecular regimes,

a multiscale flow problem between two connected cavities with large pressure and density variations,

high speed flows past multiple cylinders in slip and transitional regimes, and an impulsive start problem

are performed. The results are compared with the well-defined Direct Simulation Monte Carlo (DSMC)

or Navier–Stokes (NS) solutions in their applicable regimes. The numerical results demonstrate the effec-

tiveness of the proposed DUGKS for the study of multiscale flow problems.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Gas flows can be classified into different flow regimes based

on the Knudsen number (Kn), which is defined as the ratio of the

mean free path of the gas to the physical characteristic length. For

flow with Kn > 0.001, non-equilibrium effects become important

and the classical Navier–Stokes–Fourier (NSF) equations fail to de-

scribe such a flow [1], while the Boltzmann equation can serve

as a fundamental equation which is valid in the whole range of

Knudsen numbers.

There are mainly two types of numerical approaches to solve

the Boltzmann equation. The first one is the widely used direct

simulation Monte Carlo (DSMC) method [1], which is the prevail-

ing technique for simulating high-speed rarefied gas flows. How-

ever, the DSMC is a single scale method, where the particle trans-

port and collision processes are decoupled. As a result, the cell

size and time step are required to be smaller than the mean free

path and the mean particle collision time [1]. For flows in near

continuum or continuum regime, this requirement will lead to

enormous computational costs. Another undesired feature of the

DSMC is the statistical noise that must be reduced through in-

tensive sampling and averaging, which is more serious for low
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speed and small temperature variation flows [1]. Great efforts have

been devoted to reduce statistical noise of the DSMC method [2,3].

The second approach for solving the Boltzmann equation is to use

deterministic numerical schemes, i.e., the Discrete Velocity Meth-

ods (DVM) [4–6]. Most DVM schemes are single scale methods

with decoupled particle transport and collision, which have the

same constraints on the time step and cell size as the DSMC

[7–9]. Recently, some asymptotic preserving (AP) schemes have

been proposed to overcome these disadvantages (e.g., [10–12]).

The AP schemes for Boltzmann equation are designed to reduce

to the appropriate discretization schemes for hydrodynamic equa-

tions automatically as the Knudsen number goes to zero, without

resolving the mean free path and particle collision time on the

computational grids. The AP schemes also treats the collision term

implicitly using efficient manners to overcome the stiffness prob-

lem as the Knudsen number approaches to zero. Their stability

is independent of the Knudsen number. These schemes are able

to recover the Euler solutions in the continuum limit, but it is

still unclear whether the Navier–Stokes solutions can be accurately

obtained [13].

Recently, a unified gas kinetic scheme (UGKS) has been con-

structed for all Knudsen number flows [14–17]. The UGKS is an ag-

gressive extension of the gas kinetic scheme (GKS) which is a flux

solver for hydrodynamic equations and is mainly used to simulate

continuum flows [18]. In the UGKS, the particle transport and col-

lision effects are coupled when updating the discrete distribution

function. Consequently, the restrictions on the cell size and time
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step are avoided, and the UGKS solutions depend on the ratio of

the local time step to the particle collision time [13].

An alternative unified kinetic method, i.e., the discrete unified

gas kinetic scheme (DUGKS), has been proposed for multi-regime

flow computations recently [19,20]. The DUGKS shares the same

modeling mechanism as the UGKS [19]. The main difference be-

tween the UGKS and the DUGKS lies in the construction of numer-

ical flux for the discrete distribution function at cell interface. In

UGKS, the flux is obtained from the time-dependent distribution

function at the cell interface, and this solution is based on the lo-

cal analytical integral solution of the model kinetic equation. While

in DUGKS, the flux is calculated from the distribution function at

a half time step, and this solution is determined from a numerical

characteristic solution of the model kinetic equation. The flux in

DUGKS couples the effects of particle transport and collision, and

the updating rule is much simpler than the UGKS.

The DUGKS shares some similarities with the well-known lat-

tice Boltzmann method (LBM) which can be viewed as a spe-

cial discrete velocity type method. Both of them are based on

the relaxation-type collision models, and employ the implicit-

to-explicit transformation. The idea behind the flux evaluation

method in the DUGKS is conceptually very similar to the stream-

ing step of the LBM, i.e., the particles arrived at the cell face (in the

DUGKS) or lattice node (in the LBM) are assumed to have streamed

from the upwind, with collision effect considered. However, there

are considerable differences between the DUGKS and the LBM. The

LBM is essentially an Navier–Stokes equation solver under the low

Mach number condition, thus can only be used to simulating near

incompressible continuum flows. The DUGKS employing the LBM

type discrete velocity set (i.e., the DnQm lattices) can be viewed as

a finite-volume based off-lattice Boltzmann method. Their relative

performances for continuum flows have been compared in [21]. It

is also found that the DUGKS is not a straight forward translation

of the finite-difference interpreted LBM [22].

In previous works [19,20], the DUGKS has been applied to both

low speed and high speed non-equilibrium flows using structured

meshes. However, most non-equilibrium flow problems involve

complicated geometries, such as those in the microelectromechan-

ical systems (MEMS) industrial and aerospace engineering. The use

of unstructured mesh is preferable. In this work we aim to extend

the DUGKS to unstructured meshes and demonstrate its effective-

ness for the multiscale non-equilibrium flows.

The rest of the paper is organized as following. In Section 2,

the general procedure of the DUGKS on unstructured meshes is

presented. In Section 3, several numerical examples, including the

micro cavity flow, an expansion flow between two connected cavi-

ties, and the rarefied gas flow passing through a single and double

circular cylinders, will be computed to demonstrate the capability

of the current method in simulating flows in different regimes. An

additional test case, the impulsive start plate problem is used to

verify the uniform convergence rate of DUGKS. A brief summary is

given in the last section.

2. Discrete unified gas kinetic scheme

2.1. Shakhov model

The DUGKS is based on the Boltzmann model equation. In

this study, the collision operator is approximated by the Shakhov

model [23] for monatomic gases. In D dimensional space, the

model equation is

∂ f

∂t
+ ξ · ∇ f = − 1

τ

[
f − f S

]
, (1)

where f = f (ξ,η, x, t) is the velocity distribution function of parti-

cles with velocity ξ = (ξ1, . . . , ξD) in D dimensional velocity space

at position x = (x1, . . . , xD) and time t. Here η = (ξD+1, . . . , ξ3) is

a vector in a space with dimension L = 3 − D, which accounts for

the degrees of freedom other than the D-dimensional translational

ones. f S is the Shakhov equilibrium distribution function given by

the Maxwellian distribution function f eq plus a heat flux correction

term

f S = f eq

[
1 + (1 − Pr)

c · q

5pRT

(
c2 + η2

RT
− 5)

)]
= f eq + fPr, (2)

where Pr is the Prandtl number and c = ξ − U is the peculiar ve-

locity around the averaged macroscopic fluid velocity U; q is the

heat flux, R is the specific gas constant, and T is the temperature.

The collision time τ in Eq. (1) is related to the dynamic viscosity

μ and pressure p by τ = μ/p. The dynamic viscosity μ depends on

temperature as

μ = μref

(
T

Tref

)ω

, (3)

where μref is the viscosity at the reference temperature Tref, and

the exponent ω is a constant depends on the inter-molecular in-

teraction model. The viscosity μref can be related to the reference

mean free path λref. By using the Knudsen (Kn), Mach (Ma) and

Reynolds (Re) numbers, the μref ∼ λref relation leads to (Eq. 1.29

in [24]),

Kn =
√

2γ

π

(5 − 2ω)(7 − 2ω)

15

Ma

Re
, (4)

where γ is the heat capacity ratio. The Kn, Ma and Re numbers

are define as

Kn = λref

Lref

, Ma = Uref√
γ RTref

, Re = ρrefUrefLref

μref

, (5)

where Lref, Uref, ρref are the referenced length, velocity and density,

respectively.

The Maxwellian distribution function f eq is given by

f eq = ρ

(2πRT )3/2
exp

(
− c2 + η2

2RT

)
, (6)

where ρ is the gas density. The conservative flow variables W ≡ (ρ ,

ρU, ρE)T are calculated as moments of the distribution function,

W =
∫

ψ f dξdη, (7)

here ψ =
(
1, ξ, 1

2 (ξ 2 + η2)
)T

and ρE = 1
2 ρU2 + CVT = 1

2 ρU2 +
p/(γ − 1), where CV is the heat capacity. The heat flux q is

defined by

q = 1

2

∫
c(c2 + η2) f dξdη. (8)

The parameter η can be viewed as internal degree of freedom,

and the dependence of f on η can be removed by using two re-

duced distribution functions [25]

g(x, ξ, t) =
∫

f (ξ,η, x, t)dη, (9a)

h(x, ξ, t) =
∫

η2 f (ξ,η, x, t)dη. (9b)

The conservative macroscopic variables can be computed from

these reduced distribution functions as

ρ =
∫

gdξ, ρU =
∫

ξgdξ, ρE = 1

2

∫
(ξ 2 g + h)dξ, (10)

and the heat flux can be computed as

q = 1

2

∫
c(c2 g + h)dξ. (11)
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