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a b s t r a c t

The aim of this study is to discus different numerically models for the simulation of moving contact lines in
the context of a Volume of Fluid–Continuum Surface Force (VoF–CSF) method. We focus on the particular
situation of spreading drops. We first present the numerical methods used for the simulation of moving
contact line i.e. static contact angle versus dynamic contact angle, no slip condition versus slip condition.
A grid and time convergence is performed for the different models. We show that the integration of the
Continuum Surface Force using the finite volume method results in a grid dependence at the onset of
the spreading. The static and dynamic models are compared to experiments. It is shown that the dynamic
models based on the Cox’s relation for the dynamic contact angle are able to reproduce experiments while
static models overestimate the spreading time and are not able to reproduce the Tanner regime. The
difference between static and dynamic models is shown to increase with the Ohnesorge number.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The numerical methods developed for the simulation of moving
contact line differ by: (i) the type of the numerical methods used to
describe and transport the interface, (ii) the wall boundary
condition imposed for the description of the contact line. For the
transport of the interface, we give here some examples showing
that almost all the classical methods are concerned: Boundary
Integral methods [1–3], adaptive grid methods [4,5], Level-Set
methods [6,7], Volume of Fluid methods [8–10], Front Tracking
Methods [11,12] and coupled Level set and Volume-of-Fluid
(CLSVOF) methods [13]. Different methods have also been
developed for the modeling of moving contact lines. Most of the
methods are able to impose a given contact angle hW made by
the interface at the contact line. The condition is applied to the
normal made by the interface at the wall. The simplest situation
is then to impose a constant angle corresponding to the static
angle, i.e. hW ¼ hS [8,11,7,6,9]. When a no-slip condition is imposed
on the wall, the stress generated by a contact line moving at
velocity Ucl, can be estimated as

sxy � lUcl

D
ð1Þ

where D is the grid spacing and l is the fluid viscosity. The stress at
the contact line is clearly diverging when refining the grid size (see
for example [14] where the evolution of the viscous stress at the
wall is reported). Several authors [8,6,14] have dealt with the
‘‘stress singularity’’ paradox by introducing the Navier slip condi-
tion that gives a relation between the fluid velocity at the wall
UW and a Navier slip length kN:

UW ¼ kN
@U
@nW

ð2Þ

where nW is the normal to the wall. The grid convergence is then
obtained by solving the full hydrodynamic problem inside the
hydrodynamics slip region. Unfortunately, due to the grid refine-
ment limitation, most of these simulations use unrealistically large
slip length values and therefore the Navier slip length kN becomes in
practice an adjustable parameter for the simulation (see Bonn et al.
[15]). The grid convergence of the simulations is then reached but
an unphysical slip condition is necessary. In recent developments,
the dynamic or apparent contact angle is connected to the velocity
of the contact line. The Cox [16] relation is directly applied [10,17]
or adapted using an adjustable parameter that needs to be empiri-
cally determined from experiments [13,14].

As shown in this introduction, different strategies have been
developed for the simulation of moving contact line. We discuss
and compare different possible modelings in the first part of this
paper. Then the numerical models are compared with experiments
of spreading drop.
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2. Numerical method

2.1. VoF solver

The numerical simulations reported in this work are performed
with the Volume of Fluid (VoF) solver developed in the JADIM code
[18,10]. The one-fluid system of equation is obtained by introduc-
ing the one-fluid function C used to localize one of the two phases.
In this study, we define C as C ¼ 1 in the liquid, here the drop, and
C ¼ 0 in the external fluid. The one-fluid function C makes possible
the definition of the one fluid variables U ¼ CU1 þ ð1� CÞU2 for the
velocity, P ¼ CP1 þ ð1� CÞP2 for the pressure, q ¼ Cq1 þ ð1� CÞq2

for the density and l ¼ Cl1 þ ð1� CÞl2 for the viscosity. The posi-
tion of the interface is then given by the transport equation:

@C
@t
þ U � rC ¼ 0 ð3Þ

The two fluids are assumed to be Newtonian and incompressible
with no phase change. Under isothermal condition and in the
absence of any surfactant the surface tension is constant and uni-
form at the interface between the two fluids. In such condition,
the velocity field U and the pressure P satisfy the classical one-fluid
formulation of the Navier–Stokes equations:

r � U ¼ 0 ð4Þ

q
@U
@t
þ U � rU

� �
¼ �rP þr � Rþ qg þ Fr ð5Þ

where R is the viscous stress tensor, g is the gravity and Fr is the
capillary contribution:

Fr ¼ rr � nndI ð6Þ

where r is the surface tension, n denotes by arbitrary choice the
unit normal of the interface going out from the drop and dI is the
Dirac distribution associated to the interface.

The system of Eqs. (3)–(6) is discretized using the finite volume
method. Time advancement is achieved through a third-order Run-
ge–Kutta method for the viscous stress. Incompressibility is satis-
fied at the end of each time step though a projection method.
The overall algorithm is second-order accurate in both time and
space. The volume fraction C and the pressure P are volume-
centred and the velocity components are face-centred. Due to the
discretization of C, it results a numerical thickness of the interface,
cells cut by the interface corresponding to 0 < C < 1. The interface
location and stiffness are both controlled by an accurate transport
algorithm based on FCT (Flux-Corrected-Transport) schemes [19].
This method leads to an interface thickness of about three grid cells
by the implementation of a specific procedure for the velocity used
to transport C in flow region of strong strain and shear [18]. The
interfacial force is solved using the classical CSF (Continuum
Surface Force) model [20]:

Fr ¼ rr � rC
rCj j

� �
rC ð7Þ

The induced spurious currents have been characterized [10] and
their maximum magnitude evolve as 0:004r=l, in agreement with
other codes using the Brackbill’s formulation.

2.2. Numerical modeling of the contact angle

The numerical method for the simulation of static and dynamic
contact angles has been developed by Dupont and Legendre [10]
for 2D and axisymmetric geometries, and recently extended to
3D geometries [21]. The calculation of the capillary term requires
the knowledge of the value of the contact angle made by the
interface at the wall. Indeed, the capillary contribution in the

momentum Eq. (6) requires the knowledge of rC. Furthermore,
rC= rCj j being the normal of the interface, the boundary condition
forrC is thus directly given by the value of the contact angle hW by
the following relation:

rC
rCj j ¼ n ¼ sin hW nk þ cos hW n? ð8Þ

where the unit vectors nk and n? are the components of the normal
vector n, parallel and normal to the wall, respectively. The general
method is decomposed into two steps. We first determine the value
of the contact angle to apply at the wall. This value is then imposed
as a boundary condition using relation (8) for the calculation of the
capillary contribution (7) in the momentum balance (5). One objec-
tive of this work is to compare different possible modeling to the
dynamic modeling introduced in our code JADIM (model Dyn2 in
the following). The tested models are reported in Table 1. The two
main parameters that characterize these models are the description
of the contact angle hWðtÞ and the description of the fluid boundary
condition. The Navier slip condition (1) can be imposed in order to
remove the stress singularity at the contact line with the
introduction of the Navier slip length kN . If kN ¼ 0 a classical no-slip
condition is imposed. When considering ordinary fluids and wall
properties, a relevant value for the slip length is kN ¼ Oð10�9Þm
[22]. Note that imposing such slip lengths for solving millimeter size
drop with 100 regular cells per radius (D � R=100 � 10�5 m) which
is a very accurate description of the macroscopic flow field is equiv-
alent to impose a no-slip condition. In the following we consider two
sorts of model: ‘‘static’’ models (Stat1, Stat2 and Stat3) and
‘‘dynamic’’ models (Dyn1, Dyn2, Dyn3 and Dyn4). The simplest
model, called ‘‘Stat1’’, consists in imposing the contact angle con-
stant as the Young value hS with no slip condition kN ¼ 0. When
imposing a constant contact angle hWðtÞ ¼ hS, the effect of the sliding
condition (1) has been examined by imposing a slip length linked to
the grid size kN ¼ D=2 (model ‘‘Stat2’’) as suggested by Afkhami et al.
[14] or a fixed value for the slip length kN ¼ D32=2 (model ‘‘Stat3’’)
where D32 is the grid spacing corresponding to 32 regular cells per
radius which is the coarser grid used in this study (see next section
for the description of the numerical parameters). The dynamic mod-
els are expressed as a function of the contact line Capillary number
Ca defined as

Ca ¼ l1Ucl

r
ð9Þ

where Ucl is the contact line velocity. In our VoF formulation, Ucl is
the interface velocity interpolated at C ¼ 0:5. Due to the staggered
grid structure, Ucl is located at the distance D=2 from the wall where
the node of the tangential component of the velocity that transports
the interface is located. We have first tested the model (called
‘‘Dyn4’’) proposed by Afkhami et al. [14]. Based on 2D simulations
and the expression developed by Cox [16], they proposed the fol-
lowing expression for the dynamic contact angle

cos hd ¼ cos hS þ 5:63Ca log
K

D=2

� �
ð10Þ

The simulations reported by Afkhami et al. [14] show that it ensures
grid convergence in VoF simulations when coupled with a slip
length based on the grid spacing kN ¼ D=2. The authors suggest that
‘‘the true value of K could be determined by fitting numerical data
to data obtained experimentally’’. In their simulations, a constant
value K ¼ 0:2L is proposed for a plate withdrawing from a square
fluid pool of length L while the authors use K ¼ 0:04R for their sim-
ulations of the spreading of droplet of initial radius R. This smaller
value of K was chosen because their model is only valid for
cos hdj j < 0:6. The model ‘‘Dyn1’’ corresponds to the original model

implemented in JADIM by Dupont and Legendre [10]. The dynamic
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