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a b s t r a c t

The role of deformability in the wall-drag modification produced by the dispersion of large deformable
droplets in turbulence is investigated by Direct Numerical Simulations (DNS) of a turbulent channel flow
(Res ¼ 150) coupled with the Phase Field Model (PFM) description of the droplets. The two fluids have the
same density and viscosity, and a wide range of interface deformability is considered by changing the
Weber number: We = 0.18–2.8. The results show wall-drag modifications that depend on the droplets
deformability: when the deformability is low (small We), a significant Drag Enhancement (DE) is
observed; increasing the deformability the DE is reduced and negligible effects are observed when the
Weber number is sufficiently large. The DE is likely due to droplets velocity that reduces increasing
the deformability, introducing an obstruction to the flow and increasing drag.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Swarms of large deformable bubbles dispersed in wall bounded
turbulence produce significant modifications of the wall drag;
these effects have been investigated by many authors, focusing
on the quantification of drag and evidencing situations where large
amount of Drag Reduction (DR) can be observed [1–3]. In spite of
its practical relevance, the mechanism underpinning the wall-drag
modification in presence of large deformable bubbles is still not
clear and only few recent studies proposed a detailed analyses of
the droplet–turbulence interactions [4,5]. The Direct Numerical
Simulations (DNS) of Lu et al. [4] highlighted the role of bubbles
deformability in the wall-drag modification produced by a large
number of bubbles with the same viscosity of the surrounding fluid
and with a small density ratio (qf =qd ¼ 10). They observed that
deformable bubbles released in a turbulent channel flow could
produce Drag Reduction (DR) or Drag Enhancement (DE), according
to their deformability. Two mechanisms were proposed: (i) bub-
bles characterized by large deformability produced a near-wall
streamwise vorticity canceling, resulting in DR; (ii) bubbles with
small deformability were slowed down by the near-wall flow field,
producing an obstruction to the flow and resulting to DE. The
recent experimental work of van Gils et al. [5] showed important

DR (up to 40%) when large deformable bubbles (with viscosity ratio
qf mf =qbmb ¼ 100 and a density ratio qf =qd ¼ 1000) were released in
a turbulent Taylor–Couette flow, emphasizing the central role of
the bubbles deformability. In order to further clarify the role of
the deformability in the contest of large deformable bodies dis-
persed in turbulent wall-bounded flows, in this work the problem
has been simplified neglecting the density and the viscosity differ-
ences between the two fluids, retaining the surface tension r only.
The physical system defined through these simplifications is
governed by two leading effects: (i) droplet deformability, that is
controlled by the surface tension; (ii) droplet inertia that is compa-
rable to that of the surrounding fluid. As a result the problem is set
to its simplest configuration, highlighting the surface tension
effects and allowing a parametric analysis of the droplet deforma-
bility that can be varied between two limit cases: the single phase
flow (r ¼ 0; We!1) and the dispersion of rigid fluid spheres
(r!1; We ¼ 0). To the best of our knowledge this work repre-
sents one of the first attempts to analyze and model the interaction
between turbulence and deformable droplets, considering only the
surface tension effects.

2. Governing equations

In this work the wall-drag modification produced by a large
number of deformable droplets dispersed in wall-bounded turbu-
lence has been studied. The flow field evolution has been described
with DNSs of a modified incompressible Navier–Stokes equations
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coupled with the Phase Field Model (PFM) description of the fluid–
fluid interfaces.

2.1. The phase field model

In the PFM, the interface between two fluids is considered as a
layer of finite thickness rather than a sharp discontinuity. Across
the interfacial layer the physical properties of the fluid components
vary in a smooth and continuous way from one fluid to the other.
The state of the system is described, at any time, by a scalar order
parameter /, which is a function of the position vector x. The order
parameter directly represents one of the physical properties of the
fluid, such as its density, its molar concentration, etc.; all the
remaining properties are in turn modeled as proportional to the
scalar order parameter /ðxÞ [6,7]. Due to the continuous descrip-
tion of the interface, also the order parameter is continuous over
the entire domain and it shows smooth variations across the inter-
face between single fluid regions, where it assumes mostly uniform
values. Coupling the continuous representation of the two fluid
field with a transport equation of the order parameter, the system
evolution can be resolved in time. One of the best-known PFM is
the Cahn–Hilliard equation [8,9], where the evolution of the order
parameter is driven by the minimization of a thermodynamical
conservative chemical potential. As a result the conservation of
the phase field is ensured and the diffusion of the interfacial layer
is overcame, granting more accuracy in the computation of the
interfacial forces [7] and avoiding the major drawback of the most
common interface-tracking methods [10]. The convective
Cahn–Hilliard equation is written as follows:

@/
@t
¼ �u � r/þMr2l; ð1Þ

where u is the velocity field, M is the mobility parameter that con-
trols the interface relaxation time and l is a chemical potential that
controls the interfacial layer behavior. Eq. (1) models the evolution
in time of a diffuse interface, in particular it can describe the conser-
vative advection of a diffuse interface [11,12] and complex changes
in the interface topology. The chemical potential l is defined in
terms of the free energy functional f ½/� as follows:

l ¼ df ½/ðxÞ�
d/

; ð2Þ

where f ½/� is a conservative, thermodynamically consistent func-
tional that can assume suitable definitions according to the problem
under analysis and it. The PFM representation of an immiscible bin-
ary mixture of isothermal fluids is given by the following free
energy functional:

f ½/ðxÞ� ¼ fid þ
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In this work, the scalar order parameter / represents the rela-
tive concentration of the two fluid components. The first term on
the right-hand-side of Eq. (3), fid, is the ideal part of the free energy
that accounts for the tendency of the system to separate into pure
fluid clusters. For two immiscible fluids, the phobic behavior is
described by a double-well formulation which shows two minima
corresponding to the two stable fluid phases that are defined
through the positive constants a and b. The two fluids are allowed
to mix into the interfacial layer where they store a mixing energy
which is accounted by the non-local term 1=2jjr/j2 of Eq. (3) and
which is the source of the surface tension in the PFM. The relative
concentration equilibrium profile across the interface is given by

the competition of the two terms appearing in the free energy
formulation and can be obtained by minimizing the free energy
functional with respect to the variations of the order parameter:

l ¼ df ½/�
d/
¼ 0) a/3 � b/� jr2/ ¼ 0: ð4Þ

Integration of Eq. (4) for a one-dimensional planar interface,
where /ðz! �1Þ ¼ /�, yields two stable solutions /� ¼ �

ffiffiffiffiffiffiffiffi
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and the following non-uniform solution:
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The capillary width n ¼
ffiffiffiffiffiffiffiffiffi
j=b

p
is the interface length scale;

0:9/� 6 / � 0:9/þ in a layer of 4:164n that contains the 98.5% of
the interface surface tension [6,12]. At the equilibrium, the surface
tension r is:
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Once the interface thickness n and the equilibrium solutions /�
are chosen, Eq. (6) allows to define the free energy parameters a; b
and j necessary to achieve the desired surface tension value. The
derivation described above has been adopted and reviewed by sev-
eral authors [13,14] and the convergence of Eq. (1) to the ‘‘sharp
interface limit’’ has been recently proven [15]. In particular,
although the fictitious widening of the interface necessary for its
numerical resolution,1 the PFM can describe the desired value of r
by defining the free energy functional coefficients and adopting a
proper scaling between the capillary width n and the interface
mobility M [12,15].

2.2. Coupling with the flow field

The evolution of the velocity field u is described by the
incompressible Navier–Stokes equations provided by a phase
field-dependent surface force [16]:

r � u ¼ 0; ð7Þ
@u
@t
¼ �u � ru�rpþ mr2uþ lr/; ð8Þ

where p is the pressure term and m is the kinematic viscosity. The
coupled Chan–Hilliard/Navier–Stokes (CHNS) Eqs. 1, 7 and 8 is the
so-called ‘‘Model-H’’ [17], where the surface tension forcing lr/
is derived from the Korteweg stress.

3. Numerical simulations

3.1. Geometry and numerical scheme

In this work a swarm of droplets of initial diameter d dispersed
in a fully developed turbulent channel flow is simulated; the two
fluids are considered immiscible, incompressible, Newtonian, den-
sity-matched and viscosity-matched. With this assumptions the
system is set to its simplest configuration, allowing to isolate the
surface tension effects and the role of droplets deformability on
the wall-drag modification. With reference to Fig. 1 the coordinate
system is located at the center of the channel and x-, y- and z-axes
point in the streamwise, spanwise and wall-normal directions,
respectively. The size of the channel is 4ph� 2ph� 2h in x; y,
and z directions, respectively, and h is the channel half-height.
The droplets are initialized by superposing the phase field / over

1 At least three mesh-points are necessary to fully resolve the interface with the
current methodology employed. Larger number of mesh-points can be required
according to the accuracy of the numerical scheme adopted.
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