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a b s t r a c t

As a step towards a hybrid approach for the simulation of two-phase flow transitions, the objective of the
present work is to check out the capability of a numerically effective hybrid model. The multifield hybrid
approach for two-phase flow modeling consists in dealing separately with the small and spherical bub-
bles, treated with a dispersed approach, and with the large and distorted ones, which interface is located.
These two approaches are coupled through mass transfer terms. The overall method relies on two exist-
ing blocks, consisting in a set of averaged models dedicated to dispersed bubbles and another one ded-
icated to interface locating, which have already been validated and have given a reasonable agreement
with experimental data.

The main outcome is the simulation of a three field case with a complete set of coupling terms between
the two gas fields. This approach is used to simulate the experiment of Castillejos, a bubble plume in a
water tank presenting a wide range of bubble diameter.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

There are several approaches for two-phase flow modeling,
describing the interfaces either with a dispersed or a located point
of view. Bubbly flows are often modeled with an Eulerian dispersed
description, within the two-fluid model of Ishii [1]. The averaged
momentum balance equation is in this case closed with a set of
interfacial forces such as drag, lift, virtual mass and turbulent dis-
persion. These forces rely on empirical or statistical correlations
making assumptions on the bubbles mean diameter and shape.
On the other hand, large interface flows such as slugs or free sur-
faces are mostly simulated through located approaches such as
front tracking [2], Level-set [3,4] or Volume of Fluid [5] with an
Eulerian point of view or Lagrangian grid methods [6] with a
Lagrangian point of view. All these methods aim at calculating
the local characteristics of the interface, such as the curvature
and the normal vector, to model the interfacial transfer in the
momentum equation.

New approaches are explored to simulate more accurately the
transition regime between bubbly and separated flows. The con-
cept of a four field and two-fluid model has been presented and

studied over the last decade [7,8]. Each phase is decomposed into
a continuous and a dispersed field, resulting in a four field system
of mass, momentum and energy equations. This kind of approach
requires the set of mass transfer terms between the continuous
and the dispersed fields of the same physicochemical phase. A
spatial cutting length is dividing a phase between unresolved
structures that are modeled and the larger ones that are simulated.
This concept allows the simulation of a wide range of two-phase
flow regimes with both a good accuracy on the behavior of the
most distorted interfacial structures, and less CPU consuming than
the direct simulation of every two-phase scales. If the dispersed
fields are commonly dealt with an Eulerian point of view, several
methods can be used to locate the interface between the liquid
and gas continuous fields.

We present a hybrid multifield approach based on this four field
concept. It consists in modeling the two-phase flow with an Eule-
rian approach, the gas phase being split in two fields. The small
bubbles, assumed to be spherical, are modeled with a dispersed
approach whereas the larger bubbles, considered as too distorted
to be accurately described by correlations, are simulated through
an interface locating method. As a first step towards this new
approach, we simplify the general concept by considering the
liquid phase as continuous in our simulations. The principle of this
3-field approach is summarized in Fig. 1.
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2. Numerical model

These models have been implemented in the CFMD code NEP-
TUNE_CFD [9]. The flow motion is followed using the two-fluid
model of Ishii [1] extended to n-phase. With the assumption of a
common pressure for all fields, the system consists in three balance
equations per field, describing the conservation of the mass, the
momentum and the energy. The solver SIMPLE [10] is based on a
finite volume discretization, together with a collocated arrange-
ment for all variables. An iterative coupling of the equations is used
to ensure both mass and energy conservation. The data structure is
totally face-based, which allows the use of arbitrary-shaped cells
including nonconforming meshes. Following the strategy of the
code, the choice is made to keep an Eulerian point of view for every
field.

In the present work, we restrict our study to adiabatic cases,
simplifying the system to the mass and momentum equations for
each field, respectively Eqs. (1) and (2).
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where a; q; U; C; P; T and M are respectively the volume fraction,
the density, the velocity, the mass transfers, the pressure, the Rey-
nolds tensor and the momentum transfers of the phase k. Because of
the coupling of the two gas fields, we do have mass transfers C, and
the interfacial momentum transfer M can be written as Eq. (3)
where UInt is the interfacial velocity.

Mp!k ¼ Mhydro
p!k þ Cp!kUInt

kp ð3Þ

The modeling of the sub-grid tensor TSM is still a major
challenge for two-phase flow with located interfaces. As it is not
the subject of this paper, this term is ignored assuming that a

turbulence model should be implemented in future work. The clo-
sure laws for the dispersed field are the classical drag of Ishii and
Zuber [11], the lift of Tomiyama et al. [12], the virtual mass of
Zuber [13] and turbulent dispersion [14]. Further details can be
found in Mimouni et al. [15].
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The located gas field motion equation is closed by a local surface
tension force and an internal wall law that express the relation
between the liquid and the gas velocities at the interface. The sur-
face tension Eq. (5) is implemented as a volume force through the
CSF (Continuum Surface Force) formalism of Brackbill et al. [16].
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where bk is the averaged factor of the two-fluid model. Based on the
volume average, the averaged factor is bk ¼ ak.

The internal wall law at the interface is chosen here to enforce
the equality of the velocities of the two continuous fields. There-
fore, the drag force Eq. (6) is implemented with a characteristic
time sdrag small compared to the time step ðsdrag=dt ! 0Þ.

FD;kp ¼
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sdrag
ð6Þ

Olsson and Kreiss [17] introduced a level-set method with an
artificial compression step performed after the advection of the
level-set function to ensure that the thickness of the transition
layer is preserved. To ensure that the interfacial quantities such
as the local curvature and the normal vector are accurately calcu-
lated, the same artificial compression step Eq. (7) is run between
each physical time step. The parameters e controls this thickness,
set here to a total of 5 cells (e ¼ Dx=2 where Dx is the grid space
scale), so that the accuracy of the calculation of interface properties
such as curvature and normal vectors remains constant. The non-
physical time s is set to ensure a CFL condition lower than 1 for
the compression step.
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These approaches for the simulation of either dispersed or
located bubble interfaces have already been validated against
experimental measurements in previous work [15,18]. As exam-
ples, the numerical predictions for the experiments of Bhaga and
Weber [19] and of Brereton and Korotney [20] are presented in
Fig. 2.

The two approaches are coupled through mass transfer terms
between the two gas fields. Three contributions of this mass trans-
fer term between the gas fields have been identified. The first one
is the initiation of a located large bubble by accumulation and coa-
lescence of the dispersed field. A criterion based on the dispersed
phase void fraction and its gradient is settling the coefficient of this
dispersed to continuous mass transfer, as presented in Eq. (8). The
second is the creation of dispersed field when the located interface
becomes unresolved. Pigny [21] proposed to consider a located
bubble as unresolved if its diameter is lower than 8Dx. As it can
be seen in Fig. 3, a bubble with a diameter inferior to 8Dx will pres-
ent, because of the CSF scheme for the curvature calculation, an
overlap of the information used to calculate the curvature at two
opposite points of the interface.

The resolution criterion for a local interface is evaluated by the
comparison of the local curvature and the local void fraction gradi-
ent of the continuous gas void fraction to the space scale of the
grid. Knowing the thickness and the curvature of a resolved inter-
face, it results in a first numerical criterion for the dispersed gas
creation of Dx=20, presented in Eq. (9). Finally, the interaction

Fig. 1. Scheme of the principle of the multifield hybrid approach. The gas phase is
split in two fields, one being dealt with a dispersed approach (green) and the other
one having its interface located. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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