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a  b  s  t  r  a  c  t

Dimethyl  methylphosphonate  (DMMP)  was  used  as a  chemical  threat  agent  (CTA)  simulant  for  a  first  look
at the  effects  of  real-world  factors  on  the  recovery  and  exploitation  of  a CTA’s  impurity  profile  for  source
matching.  Four  stocks  of DMMP  having  different  impurity  profiles  were  disseminated  as  aerosols  onto
cotton,  painted  wall  board,  and nylon  coupons  according  to a thorough  experimental  design.  The DMMP-
exposed  coupons  were  then  solvent  extracted  and  analyzed  for DMMP  impurities  by  comprehensive
2D  gas  chromatography/mass  spectrometry  (GC  × GC/MS).  The  similarities  between  the  coupon  DMMP
impurity  profiles  and  the  known  (reference)  DMMP  profiles  were  measured  by dot  products  of  the  coupon
profiles  and  known  profiles  and  by  score  values  obtained  from  principal  component  analysis.  One  stock,
with  a high  impurity-profile  selectivity  value  of  0.9  out  of  1, had  100%  of  its  respective  coupons  correctly
classified  and  no  false  positives  from  other  coupons.  Coupons  from  the  other  three  stocks  with  low
selectivity  values  (0.0073,  0.012,  and  0.018)  could  not  be sufficiently  distinguished  from  one  another
for  reliable  matching  to their  respective  stocks.  The  results  from  this  work  support  that:  (1)  extraction
solvents,  if not  appropriately  selected,  can  have  some  of  the  same  impurities  present  in a  CTA  reducing  a
CTA’s  useable  impurity  profile,  (2)  low  selectivity  among  a CTA’s  known  impurity  profiles  will  likely  make
definitive  source  matching  impossible  in  some  real-world  conditions,  (3)  no  detrimental  chemical–matrix
interference  was  encountered  during  the  analysis  of actual  office  media,  (4) a short  elapsed  time  between
release  and  sample  storage  is  advantageous  for  the  recovery  of the  impurity  profile  because  it  minimizes
volatilization  of forensic  impurities,  and  (5)  forensic  impurity  profiles  weighted  toward  higher  volatility
impurities  are  more  likely  to be  altered  by  volatilization  following  CTA  exposure.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

To date we have found that different commercial stocks of syn-
thetic chemicals such as dimethyl methylphosphonate (DMMP)
have impurity profiles that are stock specific [1–3]. An impurity
profile is a vector of data with each data point representing the sig-
nal intensity or concentration of an impurity obtained by chemical
analysis of a sample. Typically, as in this paper, the signal inten-
sities are normalized by dividing each impurity’s signal intensity
(e.g., chromatographic peak area) by the sum of all impurity inten-
sities in the original impurity vector so that the sum of all intensities
equals one. Impurity profiles have been demonstrated as a potential

� Presented at the 36th International Symposium on Capillary Chromatography
and Electrophoresis and 9th GC × GC Symposium, Riva del Garda, Italy, 27 May–1
June 2012.

∗ Corresponding author. Tel.: +1 509 371 7589; fax: +1 509 375 2227.
E-mail address: carlos.fraga@pnnl.gov (C.G. Fraga).

tool for associating different chemical samples according to source,
i.e., chemical samples from the same source (e.g., stock, synthe-
sis route, or geographic region) have statistically indistinguishable
impurity profiles that are distinguishable from other sources to an
extent [1–5]. This is potentially useful in forensic investigations
involving chemical threat agents (CTAs) used in crimes and terror-
ist attacks by linking CTA samples from a crime scene to a CTA or
starting materials obtained from the actual perpetrators. Recently,
impurity profiles obtained from various batches of the chemical
warfare agent sarin have demonstrated the ability to trace sarin to
its specific starting material [1].  While the potential forensic value
of impurity profiles has been investigated, their usefulness in cases
when a CTA has been exposed to different matrices under real-
world conditions has not been studied. Herein, we  take a first look
at the effects of some real-world factors on impurity profiles to get
a better assessment of profile robustness and to understand the
limits and criteria for source matching using impurity profiles.

One probable real-world scenario is an aerosol release of a CTA
in an office building. In such an event, the aerosolized CTA deposits
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itself onto office media that are later sampled and analyzed by
forensic investigators. If a CTA’s impurity profile is going to be
useful in a forensic investigation, it needs to remain substantially
unaltered during the time the CTA is disseminated, deposited, sam-
pled, stored, and analyzed. Herein, we selected DMMP  as a CTA
simulant because it is an accepted surrogate and key precursor
for G agents such as sarin [6], and its impurity profile has been
investigated but not tested against real-world factors [3].  For the
first time, this paper investigates the influence of eight real-world
factors on the forensic utility of a CTA’s impurity profile: (I) pro-
file pattern, (II) aerosol-release duration, (III) plume duration, (IV)
exposed matrix, (V) elapsed time from CTA deposition to sample
storage, (VI) sample storage temperature, (VII) sample storage vol-
ume, and (VIII) extraction solvent. In essence, these factors are
likely to be encountered when a CTA is released as an aerosol and
the exposed surrounding media are then sampled, stored, and sol-
vent extracted for chromatographic-mass spectrometric analysis.
CTA decontamination was not addressed in this study, but was
addressed in another study and not shown to have a noticeable
influence on a CTA’s impurity profile under the reported conditions
[1].  Of course there are other factors, but those used here provide
an initial assessment of impurity profiling for forensic applications
under real-world conditions.

In this paper, the above eight factors were investigated in three
studies (study 1, 2, and 3) that together tested the effects of these
factors on the recovery and source matching of impurity pro-
files from different DMMP  stocks disseminated onto typical office
media. Comprehensive 2D gas chromatography/mass spectrome-
try (GC × GC/MS) was used to provide impurity profiles while the
recovery of an impurity profile was measured by assessing the sim-
ilarity between the profile from a DMMP-exposed coupon and its
known DMMP  stock profile. For the first time, the dot product was
used to measure similarity among impurity profiles which proved
useful in revealing and quantifying factor effects. Source matching
was measured as the fraction of exposed coupons that were cor-
rectly matched to their DMMP  stocks using all the tested DMMP
stocks as source options. Finally, for the first time, the use of the
analytical figure of merit known as selectivity was  demonstrated
as a potential way to measure the quality or forensic value of an
impurity profile.

2. Theory

2.1. Profile similarity

Dot-product based algorithms are proven and typically used
for measuring the similarities among mass spectra for chemical
identification [7].  In this paper, we measured similarity using the
normalized dot product of a coupon’s impurity profile and refer-
ence DMMP  stock profile. The normalized dot product is:

d =
(

r
||r||

)T (
v

||v||
)

(1)

where superscript T represents transpose, || || represents the
Euclidean norm, r (J × 1) is a reference impurity profile consist-
ing of J impurities, v is like r, but is the observed coupon profile
to be matched to r. The result, d, is a scalar value between 0 and 1,
where a perfect match between impurity profiles yields d = 1, but
two completely different (orthogonal) profiles yields d = 0.

Profile similarities can also be quantified and visualized through
a scores plot obtained from principal component analysis (PCA) of
impurity profiles. PCA is widely accepted and has been successfully
used to illustrate similarities among CTA impurity profiles [5].  PCA
converts a data matrix of impurity profiles into a scores matrix and
loadings matrix for the selected principal components [8].  Impurity

profiles that cluster closer together in scores space are more similar
than those that are farther apart on the scores plot.

2.2. Profile selectivity

The uniqueness of an impurity profile relative to others can be
measured by calculating its selectivity value. Selectivity for data
vectors (e.g., impurity profiles) and higher-order data is defined by
Faber et al. [9] and is a scalar that ranges from 0 to 1. In this paper,
1 indicates no overlap between the impurity profile of interest and
all other profiles; 0 means complete overlap (i.e., no uniqueness)
between the impurity profile of interest and all others. The key
advantage of calculating selectivity is that it objectively reduces
the complexity of comparing several impurity profiles by providing
a single score for each profile. The calculation of selectivity first
involves determining the net analyte signal for the impurity profile
of interest. The net analyte signal is that portion of the impurity
profile that is unique from all other profiles. It is obtained by the
product of an orthogonal projection matrix and the impurity profile
of interest:

r∗ = (I − SS+)r (2)

where r* (J × 1) is the net analyte signal of the impurity profile of
interest r, I (J × J) is the identity matrix, S (J × [K-1]) is the matrix
consisting of all profiles minus the profile of interest, K is the total
number of impurity profiles, and S+ is the pseudo-inverse of S. If an
impurity profile r is completely unique from all other profiles in S,
then its net analyte signal r* will equal r. If r is only partially unique
from all other profiles, then r* will not equal r and the two profiles
will look different when viewed as bar graphs because r* is missing
portions from r. Selectivity quantifies any differences between r*
and r through the ratio of the Euclidean norms (|| ||) for r* and r:

selectivity = ||r∗||
||r|| (3)

where a selectivity value of 1 means r* equals r or the impurity
profile of interest is totally unique; 0 means r* is a vector of zeros
or the impurity profile of interest has no uniqueness.

2.3. Experimental design and statistical analysis

The use of a screening study prior to a more in-depth study is
a good practice for researchers trying to determine the influence
of several factors on a phenomenon of interest. Herein, a 2(7−4)

III
design [10,11] (or two-to-the-seven minus four, resolution three
fractional factorial design) was used to measure the main effects
of seven factors that could potentially affect an impurity profile.
The main effect for a factor is the difference in the measured vari-
able (e.g., normalized dot product) when changing a factor’s value
between two  levels, averaged across the levels of all other factors.
The experimental design permits the testing of a maximum num-
ber of factors at two levels using only eight experiments. Its major
limitation is that main effects are confounded with (or indistin-
guishable from) two-factor interactions. In general, it is prudent to
include a “dummy” factor which has no expected influence on the
measured outcome variable. The dummy  factor is helpful for iden-
tifying a real factor that does not have a measurable effect because
its main effect is less than that of the dummy  factor [12]. ANOVA
(analysis of variance) can then be used to provide insight as to what
factors have a significant effect by using the pooled variability of
those factors with main effects equal to or less than the dummy
factor as experimental error [10]. The p-values and F-ratios from
the ANOVA are then used to justify what factors are significant and
worthy to be studied in depth.

In terms of an in-depth study, a split-plot design is often used
when some factors in the experiment are more difficult to change
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