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a b s t r a c t

We employ a numerical simulation of the three-dimensional fluid flow and the simultaneous transport of

sediment to reproduce current-driven sediment transport processes. In particular, the scouring at a rectan-

gular obstacle is investigated. To solve the instationary incompressible Navier–Stokes equations we use the

code NaSt3D. The morphological change of the sediment bed is modeled by Exner’s bed level equation, which

is discretized and coupled to the discrete fluid model, i.e., to the NaSt3D code. A large eddy turbulence ap-

proach using a Smagorinsky subgrid scale tensor is applied. For our purposes, we only consider bed load

transport under clear water conditions. Furthermore, we demonstrate mass conservation and convergence

of our approach for a test case. We compare the results of our numerical simulations for a scour mark with

those obtained in a laboratory flume. The typical sedimentary processes and the sedimentary form of a scour

mark are well captured by our numerical simulation.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Sediment transport processes and scouring effects are significant

issues in hydraulic engineering. Usually, the physical processes of

forming scour marks and sedimentary forms are studied in laboratory

flumes. Such experiments are however time-intensive, costly and not

always easy to conduct. Here, numerical simulation can help to re-

duce costs and to obtain a better understanding of the relevant flow

and transport phenomena.

Fluvial obstacle marks are mainly generated by bed load trans-

port, which is a driving constituent of sediment transport [41]. In

case of a scour mark, sediment is entrained in front of an obstacle,

the luff, and transported in the bed load layer around the obstacle.

If the velocity then gets smaller than a critical value, sediment is de-

posited in the lee. The type of transport under clear water conditions

is almost exclusively reptation. The involved processes and the result-

ing depositional bedforms are strictly three-dimensional. We present

a numerical approach for their simulation and discuss the obtained

results.

The remainder of this paper is organized as follows. In Section 2,

we describe the fluid-sediment-model, which consists of the Navier–

Stokes equations, the turbulence modeling approach, and Exner’s
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bed level equation. In Section 3, we shortly discuss the numerical

discretization and its properties. In Section 4, we compare the results

of our numerical simulations to a scour mark studied in a laboratory

flume. Some concluding remarks are given in Section 5.

2. Model: Navier–Stokes and Exner’s bed level equation

Due to the complex three-dimensional character of the scour

mark and other bedforms, it is necessary to use a full three-

dimensional flow model. To this end, we use a single phase model.

Here, for the flow problem, the instationary incompressible Navier–

Stokes equations in their dimensionless form read as

∂u

∂t
+ ∇ · (u ⊗ u) = 1

Fr
g − ∇p + 1

Re
�u in � f ∈ R

3, (1a)

∇ · u = 0 in � f ∈ R
3, (1b)

where u denotes the velocity, p the pressure, and g the volume forces.

Re = u∞ · d

ν
(2)

denotes Reynolds number and

Fr = u∞√
g · d

(3)

the Froude number. Both numbers, Re as well as Fr, are dimensionless

numbers which characterize the flow conditions. The characteristic
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Fig. 1. The sediment surface is described by the height h(x, y), i.e. the distance from a

underlying plane (x, y). Slopes are denoted by ∇h and can be computed directly. Thus,

the fluid domain �f is bounded by h(x, y) from below.

Fig. 2. If the slope angle surpasses the critical angle α > αc , surplus masses are dis-

tributed to the adjacent cells in each iteration step. Lateral cells are corrected with 1
12

of the surplus masses and diagonal cells with 1
24

, which includes a safety factor of 1
2

.

This process is iterated over the whole sediment surface until the limit condition (13)

is fulfilled for each cell in each direction.

length and velocity are denoted by d and u∞. As commonly used, ν
stands for the kinematic viscosity of the fluid.

To model the turbulence a Large Eddy Simulation (LES) is chosen.

Details regarding turbulence models can be found in [31]. For the here

described applications LES is viewed as the optimum for accuracy,

computational efficiency and handling. An approach by Smagorinsky

[38] is used as a sub-scale model. Applying a space averaging filter

[35] to the Navier–Stokes Eqs. (1a) yields

∂u

∂t
+ ∇ · (u ⊗ u) = 1

Fr
g − ∇p + 1

Re
�u − ∇ · τ (4)

where u and p are the filtered quantities. Eq. (4) now contains the

additional sub-grid-scale tensor

τ = −νt Di j (5)

Table 1

Selection of values for the critical angle of repose αc

[21,30]. The large variety and the measuring of the val-

ues under water allows only rough estimates. This fact

has to be taken into consideration when validating the

numerical experiments.

Sand Dry to wet 20 − −45◦

Gravel Roundness 30 − −50◦

Silt and clay Shape and roughness 20 − −60◦

Fig. 4. Flow chart of our loosely partitioned coupling algorithm in each time step, the

velocities from NaSt3D are used to calculate the new sediment height h, which, after

correcting to hαc
due to the slope limiter iteration, determines the new �f and there-

fore the new fluid domain.

where the eddy-viscosity is denoted by νt = l2|D| with D =
√

1
2 Di jDi j

and

Di j =
(

∂ui

∂x j

+ ∂uj

∂xi

)
(6)

As the characteristic length l we use

l = Cs

√
�x2 + �y2 + �z2. (7)

The Smagorinsky constant Cs is set to Cs = 0.0825.

The Navier–Stokes equations are solved on a fluid domain �f. The

bottom of this domain is bounded by the sediment surface h(x, y).

This sediment surface h describes the height of the underlying sedi-

ment with respect to a reference plane (x, y) further below, compare

Fig. 1. To model the temporal change of the sediment surface h, we

use the bed level equation postulated by [16], i.e.

∂h

∂t
+ ∇ · qs(τ (u)) = 0, (8)

where qs(τ(u)) is the transport rate function of the sediment. It de-

pends on the shear stress τ , which is a function of the fluid velocity

u. Here, the shear stress function τ (u) is needed on the sediment sur-

face. The Exner equation results from the conservation of mass and

therefore from first principles. It states that the net balance between

gain and loss of mass in a certain control volume results in a change

of sediment height h. Several studies using the Exner equation to in-

vestigate the evolution of the geomorphology were conducted in e.g.

[23,24,32,33]. Moreover, Coleman and Nikora [8] derived a version of

Fig. 3. Results of 8 test simulations with slope limiting algorithm given a sediment pile and critical angles from 25° to 60°. After 10 − −12 iterations all angle conditions are fulfilled

while the masses are conserved.
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