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a b s t r a c t

A translating discontinuous-grid-block model for moving boundaries of finite thickness based on multi-

relaxation time version of lattice Boltzmann method has been developed. The implementation of this model

to simulate moving boundary flows has been demonstrated for the cases of a cylinder in simple shear flow,

a single rigid wing executing ‘clap and fling’ motion, and the propulsion of a plunging flat plate. A num-

ber of interpolation schemes of linear, quadratic and cubic natures are assessed around the discontinuous

grid interface. It is shown that the implementation of a body-fitted refined mesh that moves along with the

object reduces the spurious oscillations registered in the force and velocity measurements compared to a

single coarse grid block. Moreover, use of multiple relaxation times helps overcome stability issues at high

Reynolds number, normally encountered in the single-relaxation time model. Significantly, in the former

model the same base grid could handle flows with good accuracy for 10 ≤ Re ≤ 1000. The proposed tech-

nique offers significant advantage in terms of capturing flow around moving solids at lower computational

cost and simulation time as compared to the stationary discontinuous-grid-block method.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In the field of fluid mechanics, dealing with complicated processes

like phase change and moving boundary flows has emerged as a big

challenge, especially with ever increasing cost of experimental equip-

ment and limited data availability [1]. However, with rapid improve-

ments in computational facilities, design of systems via numerical

analyses is being given more preference over conducting physical ex-

periments. Most of these are based on the solution of Navier–Stokes

equation and have been successful as well. However, the existing nu-

merical schemes of re-meshing, grid generation and efficient matrix

solvers, etc. that has garnered significant attention in the recent past

suggest that there is still scope for improvement. Encountering vari-

ous limitations in Navier–Stokes based mathematical models and ex-

periencing complexities in implementation, researchers started opt-

ing for other alternatives. In the past decade, the lattice Boltzmann

method (LBM) emerged as one such substitute which enjoys certain

advantages over existing techniques. Some of the salient features are

(a) the solution process is local in nature and hence there is no re-

quirement of solving simultaneous linear algebraic equations which

∗ Corresponding author. Tel.: +911126591270; fax: +91 11 26582053.

E-mail address: agupta@mech.iitd.ac.in, amitgupta2004@gmail.com (A. Gupta).

makes the solution process non-iterative and free of matrix inver-

sions, and (b) it is easy to implement and parallelize.

By convention, LBM utilizes a regular, uniform and stationary

Cartesian grid for solving the discretized Boltzmann equation where

the particle distribution functions are calculated and whose hydrody-

namic moments provide the macroscopic variables (density, velocity

and temperature) [2–6]. The most commonly used version is the BGK

(Bhatnagar, Gross and Krook) or also known as the single-relaxation

time (SRT) model. Despite its advantages, the BGK model poses nu-

merical instability at low values of relaxation time and hence is diffi-

cult to use for flows at higher Reynolds number (Re). Contrary to SRT,

the multi-relaxation time (MRT) model exhibits better numerical sta-

bility even at high Re (i.e., at very low values of relaxation time) and

has been quite successful in curtailing the spurious oscillations regis-

tered in force measurement [7,8].

Although quite successful in reducing noise and fluctuations ob-

served in the calculation of forces, MRT does not eliminate them com-

pletely, especially for moving bodies. This is due to the variability in

shape or volume of the object, i.e., the number of nodes or grid points

inside the solid do not remain constant as these undergo transitions

from non-fluid region to fluid region or vice versa due to the move-

ment of the solid (which contributes to the noise). As demonstrated

with the help of Fig. 1 which shows the standard LBM interpreta-

tion of a solid body immersed in fluid, this issue can be resolved by

improving the resolution of moving body by refining mesh or grid
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Fig. 1. Layout of the regularly spaced lattices and curved solid boundary (solid red). The hollow and filled circles denote fluid and solid nodes respectively. The solid squares denote

the boundary nodes. The dotted line represents the halfway bounceback interpretation of the curved geometry with (a) normal and (b) increased resolution. (For interpretation of

the references to color in this figure legend, the reader is referred to the web version of this article).

size near the surface of the solid to capture the minutest of details.

Here, the outline of a moving object is represented by a set of fixed

nodes lying exactly halfway between the immediate solid and fluid

nodes on either side of its boundary. The true shape of a moving body

can also be preserved by the employment of the immersed boundary

methods, where the boundary is represented by a set of nodes which

are not stationary (as in standard LBM) but are constantly moving

with the body [9]. But in either case, as the mesh size decreases, the

resolution of an object will improve which can be expected to lead to

increased accuracy in results obtained.

Regrettably, refinement of the grid throughout the domain (even

in those regions where the flow is not expected to evolve rapidly and

drastically) is computationally expensive and inefficient. This prob-

lem can be overcome by using a coarser mesh far away from the

body thereby creating zones of different mesh sizes, which we term

as the discontinuous-grid-block method in LBM. Creation of separate

coarse and fine block can greatly reduce the computational time and

memory in comparison to the employment of uniform grid through-

out. In the past, several groups have demonstrated the principles of

the discontinuous-grid-block method applied to flows past stationary

solids [10–12]. However, for a moving body, developing a body-fitted

mesh which is dynamic and moves along with the object on a ‘carpet’

of the coarse block is essential to get improved accuracy and at the

same time maintaining a reasonable computational efficiency.

Thus, in the present study we extend the earlier work carried

out by Yu et al. [10,11] and Peng et al. [12] on the stationary

discontinuous-grid-block (SRT and MRT, respectively) by developing

an algorithm for situations where the finer block is desired to trans-

late with the moving solid (and in essence, a shifting discontinuous-

grid-block LBM). Although the SRT version of the moving block LBM

has been developed previously [13], the focus of this work is to high-

light and illustrate the details of this translating multiblock method

using MRT version of LBM. Additionally, the method as applied to the

analysis of flows with 1 ≤ Re ≤ 1000 is also demonstrated and dis-

cussed from stability and accuracy considerations.

2. Methodology

2.1. Multi-relaxation time LBM

The detailed description of the SRT as well as MRT uniform grid

models, calculation of macroscopic variables from the distributions,

the force evaluation on a moving body using halfway bounceback

method (as proposed by Ladd [6]) along with proper validations are

provided in earlier publications [14,15]. However, since the multi-

block method described here is based on the MRT version, it is re-

iterated here to avoid any confusion or discontinuity.

In this method, the distribution function f (as defined in the SRT

model) in the discrete velocity space B is mapped onto the moment

space K by using a transformation matrix M [8], i.e.,

f̂ = M f and f = M−1 f̂ (1)

where f̂ is a column matrix consisting of moments of the velocity dis-

tribution function (each row vector) which represents the following

quantities in two-dimensional space:

f̂ = [ρ, e, ε, jx, qx, jy, qy, pxx, pxy]
T

(2)

where ρ is the density, e signifies the kinetic energy, ɛ epitomizes the

square of kinetic energy, jx and jy are the x and y components of the

momentum flux, qx and qy are related to the x and y components of

energy density, and pxx and pxy refer to the diagonal and off-diagonal

terms in viscous stress tensor. Since the moments represent different

physical quantities, MRT enjoys an added advantage of independently

varying the relaxation time scales. Also, the transformation matrix

is orthogonal (i.e. M.MT = I) which ensures that the relaxation time

matrix in moment space K comes out to be diagonal [16].

The equilibrium values for the non-conserved moments can be

obtained from the conserved moments ρ and j (jx and jy) [8] as

eeq = −2ρ + 3

ρ

(
j2
x + j2

y

)
(3)

εeq = ρ − 3

ρ

(
j2
x + j2

y

)
(4)

qeq
x = − jx, qeq

y = − jy (5)

peq
xx = 1

ρ

(
j2
x − j2

y

)
(6)

peq
xy = 1

ρ
jx jy (7)

The transformation matrix (orthogonalized by Gram-Schmidt

procedure [17]) as employed by Lallemand and Luo [8] for the D2Q9
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