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a b s t r a c t

In this paper, we construct active flux schemes for advection diffusion. Active flux schemes are efficient third-

order finite-volume-type schemes developed thus far for hyperbolic systems. This paper extends the active

flux schemes to advection diffusion problems based on a first-order hyperbolic system formulation that is

equivalent to the advection–diffusion equation in pseudo-steady state. An active flux scheme is first devel-

oped for a generic hyperbolic system with source terms, applied then to a hyperbolized diffusion system, ex-

tended to advection diffusion by incorporating the advective term as a source term, and enabled for unsteady

problems by implicit time integration. Boundary conditions are discussed in relation to a non-uniqueness

issue, and a weak boundary condition is shown to resolve the issue. Both for steady problems and for sub-

iterations within unsteady problems, a globally coupled system of residual equations is solved by Newton’s

method. Numerical results show that third-order accuracy is obtained in both the solution and the gradi-

ent on irregular grids with rapid convergence of Newton’s method, i.e., four or five residual evaluations are

sufficient to obtain the design accuracy in both space and time.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Active flux schemes have been developed for hyperbolic systems

of conservation laws in Refs. [1,2], built upon Scheme V of Van

Leer [3], as a viable alternative to other high-order methods. Active

flux schemes are finite-volume-based compact high-order schemes.

These schemes are substantially different from other high-order

schemes and have attractive features for a practical implementation.

First, active flux schemes do not rely on a typical one-dimensional

flux across a control-volume face, but incorporate multi-dimensional

physics into the residual and do not introduce unphysical discontinu-

ities into solution [4]. The numerical flux at a face is determined not

by solving a one-dimensional Riemann problem, but calculated by

the method of spherical mean, which is an exact solution to a multi-

dimensional initial-value problem. It is equivalent to a solution to the

characteristic equations in one dimension. Second, the memory re-

quirement is much reduced compared with discontinuous Galerkin

methods due to sharing of degrees of freedom among elements. In

addition to cell-averages, active flux schemes carry point-values at

faces; the latter are shared by adjacent cells, thus resulting in 2 de-

grees of freedom per cell for third-order accuracy in one dimension, 3
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in two dimensions, and only 2.2 in three dimensions. The active flux

methodology has been developed for systems of hyperbolic conserva-

tion laws in Refs. [1,2], but its extension to diffusive equations has not

been well studied yet. Towards the development of practical third-

order active-flux schemes for viscous flow simulations, in this paper,

we focus on the construction of active-flux schemes for diffusion and

advection diffusion problems.

One possible approach to the construction of active flux schemes

for diffusion is the recovery approach proposed in Ref. [5]. Specif-

ically, a quartic polynomial is constructed over two adjacent cells,

based on a quadratic polynomial defined within each cell, and a dif-

fusive flux is directly evaluated by differentiation at the face. How-

ever, our experience shows that the resulting explicit time-stepping

scheme is subject to a severe stability restriction, and thus limiting its

potential use (an analysis is given Ref. [6]). In order to develop high-

order diffusion schemes while preserving the advantages of the ac-

tive flux scheme, we consider the construction of diffusion schemes

based on the first-order hyperbolic system method [7] where the dif-

fusion equation is discretized in the form of a first-order hyperbolic

system. One of the advantages of this method is that schemes de-

veloped for hyperbolic systems can be directly applied to diffusion.

The method was first introduced for this purpose in Ref. [7], extended

to the advection–diffusion equation in Ref. [8], to the Navier–Stokes

equations in Ref. [9], to time-dependent advection–diffusion prob-

lems in Refs. [10,11]. At the same time, the method has also been
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employed for the development of first-, second-, and third-order

edge-based finite-volume schemes as in Refs. [12–16], as well as high-

order residual-distribution schemes in Refs. [10,11,17,18]. Through

these papers, the method has been shown to offer a number of advan-

tages over conventional methods, not only the drastic simplification

in discretization (i.e., advection scheme for diffusion), but also sig-

nificant acceleration in steady convergence by explicit and implicit

solvers, providing an equal order of accuracy for the solution and the

gradients (viscous/heat fluxes) and exceptionally high-quality gradi-

ents on fully irregular grids (see e.g., [17]).

This paper demonstrates that the active flux scheme for diffusion

can be constructed by applying the active flux scheme developed for

hyperbolic systems as presented in Refs. [1,2] in combination with

the physical time integration by the backward difference formulas. In

doing so, we have found that active flux schemes need a careful con-

struction for hyperbolic systems with source terms, which include

the hyperbolic diffusion system. This paper shows how to construct

active flux schemes for hyperbolic systems with source terms, and

then how the resulting schemes can be immediately turned into dif-

fusion schemes. Boundary conditions are also discussed in relation to

a non-uniqueness problem. Active-flux schemes are shown to allow

infinitely many solutions if boundary fluxes are fixed by boundary

conditions. We demonstrate that the issue is successfully resolved by

a weak boundary procedure.

The hyperbolic formulation of diffusion employed here and in Ref.

[7] is related, as mentioned in Ref. [7], from the pioneering work of

Cattaneo [19] and Vernotte [20]. In these references, the hyperbolic

model for diffusion was introduced as an alternative model to re-

solve the paradox of the infinite propagation speed associated with

the classical diffusion equation expressed by second-order deriva-

tives. The equivalence between the hyperbolic model and the diffu-

sion equation is established in the limit of vanishing relaxation time

[21]. Therefore, in order to employ the hyperbolic model to solve the

diffusion equation, the relaxation time needs to be very small, often

leading to a hyperbolic system with stiff source terms. There have

been efforts in constructing numerical schemes for such a model [22],

and for a particular generalization to advection diffusion [22–25], fo-

cusing on the treatment of the stiff source terms. Also, there has been

a series of works [26–30] concerning the use of Cattaneo’s model for

advection–diffusion problems targeting at applications in which the

finite propagation speed has a physical importance. As stated in Ref.

[30], their advection–diffusion system is not equivalent to the classi-

cal advection–diffusion equation with a second-derivative diffusion

term in the steady state. In contrast, the hyperbolic method consid-

ered here deliberately designs a first-order hyperbolic system to re-

cover the classical advection–diffusion equation in the steady state

[8]; and the same for the Navier–Stokes equations [9,15,16]. In this

context, the ‘relaxation time’ is a free parameter that can be chosen

to enhance convergence to the steady state

Recently, high-order explicit time-integration schemes have been

developed for advection–diffusion-reaction problems [31–33] based

on a hyperbolic formulation similar to the one considered in Ref.

[8]. In their work, the relaxation time is carefully defined to retain

time accuracy with explicit time integration schemes. As a conse-

quence, the explicit time step is subject to a typical O(h2)-type re-

striction, (where h is a mesh spacing) although a larger time step

is allowed compared with conventional schemes. In the hyperbolic

method considered here, we choose an artificial relaxation time, so

that explicit time-stepping schemes (used to reach the steady state)

allow O(h) time steps, or equivalently the condition number of a lin-

earized system associated with implicit solvers becomes O(1/h), not

O(1/h2), and thus significantly improved convergence is achieved in

iterative solvers. When a time-accurate solution is needed, we pre-

fer to employ ”sub-cycling”, where each (large) time step is executed

as the solution to a pseudo-steady problem, as discussed further

below.

Given a successful construction of active-flux diffusion schemes,

we discuss an extension to advection diffusion problems. It should

be pointed out that the extension is not as straightforward as adding

the diffusion scheme to the advection scheme. Such a naive exten-

sion will destroy third-order accuracy easily. This is a well-known is-

sue for schemes that require compatible discretizations, including the

residual-distribution method [34], the third-order edge-based finite-

volume method [13], and the active-flux method. One way to ensure

the compatibility is to formulate the advection–diffusion equation as

a single hyperbolic system [8]. Then, the construction of the active-

flux scheme will be trivially simple for the advection–diffusion equa-

tion. However, this strategy is currently not applicable to the com-

pressible Navier-Stokes equations because a complete characteristic

decomposition has not been discovered yet for hyperbolic formula-

tions of the compressible Navier-Stokes equations [9,15,16]. As a prac-

tical alternative, we propose a strategy of adding the advective term

to the diffusion scheme as a source term. The idea is applied to the

computation of the face values, and the cell-averages are updated by

the usual finite-volume method with the sum of advective and diffu-

sive fluxes to guarantee discrete conservation. We demonstrate that

the resulting advection–diffusion scheme yields third-order accurate

solution and gradients for both steady and unsteady advection diffu-

sion problems.

This paper also presents a highly efficient Newton solver for a

system of globally coupled residual equations, which needs to be

solved both for steady problems and for sub-iterations within un-

steady problems. It is shown that the convergence is significantly im-

proved by Newton’s method: four or five Newton iterations (i.e., only

four or five residual evaluations) are sufficient both for steady prob-

lems and for the sub-iterations within unsteady problems that were

mentioned above.

The present study focuses on linear advection–diffusion problems

in one dimension to illustrate the basic ideas on extending the active

flux method to diffusion and advection diffusion. All numerical re-

sults are therefore presented for linear problems. Essential ideas are

applicable to nonlinear problems as well as higher dimensions, but

algorithmic details remain a subject for future research and beyond

the scope of the paper.

The paper is organized as follows. In Section 2, we present a hy-

perbolic diffusion system and its characteristic form. In Section 3,

we construct an active-flux scheme for a generic hyperbolic system

with source terms. In Section 4, we apply the developed active-flux

scheme to the hyperbolic diffusion system. In Section 5, we extend

the scheme to unsteady problems. In Section 6, we discuss an ex-

tension to advection diffusion problems. In Section 7, we describe a

Newton solver used to solve the residual equations. In Section 8, we

present numerical results for steady and unsteady advection diffu-

sion problems. Finally, in Section 9, concluding remarks are given.

2. Hyperbolic diffusion system

Consider the diffusion equation:

∂τ u = ν ∂xxu + s1, (1)

where ν is a constant diffusion coefficient and s1 = s1(x, u) is a source

term. In this Section, and also in Sections 3 and 4, we focus on steady

problems, and thus the variable τ is a pseudo-time. Steady solutions

can be obtained by solving, instead of the diffusion equation, the fol-

lowing first-order hyperbolic system:

∂τ u + ∂xf = s, (2)

where

u =
[

u
p

]
, f =

[
−νp
−u/Tr

]
, s =

[
s1

s2

]
, (3)

where p = ∂xu, s1 = s, s2 = −p/Tr, and Tr is a relaxation time

that remains to be chosen.
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