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a b s t r a c t

A new way of obtaining the algebraic relation between the nodal values in a general one-dimensional trans-

port equation is presented. The equation can contain an arbitrary source and both the convective flux and

the diffusion coefficient may vary arbitrarily. Contrary to the usual approach of approximating the deriva-

tives involved, the algebraic relation is based on the exact solution written in integral terms. The required

integrals can be speedily evaluated by approximating the integrand with Hermite splines or applying Gauss

quadrature rules. The startling point about the whole procedure is that a very high accuracy can be obtained

with few nodes, and more surprisingly, it can be increased almost up to machine accuracy by augmenting the

number of quadrature points or the Hermite spline degree with little extra cost.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Transport equations are partial differential equations (PDE) that

are ubiquitous in many branches of science, in particular Fluid Me-

chanics. They govern the evolution of flow variables whose values,

for one reason or another, are required to be known in a certain do-

main. Unfortunately, an analytical solution to these equations is sel-

dom possible, so in order to know the field at a discrete number of

points one has to resort to numerical techniques that provide an ap-

proximate solution. The computational techniques employed for the

fluid mechanics equations gave birth to a branch called computa-

tional fluid dynamics (CFD) that nowadays has almost constituted a

separate subject.

There has been a huge effort along the years to improve the algo-

rithms devised to obtain the flow field solutions with general numer-

ical methods: finite differences, elements, volumes or spectral. Finite

differences and volumes employ a numerical approximation to the

derivatives present in the equation, whereas, generally speaking, fi-

nite elements or spectral techniques use a kind of solution expansion

either in a local or global basis. Usually these approaches are one-

dimensional: the discretization along one coordinate is independent

of the others. For a standard discretization it is worth pointing out

that none of these methods uses the solution of the ordinary differ-

ential equation (ODE) that can be obtained if the multidimensional

partial differential equation (PDE) is integrated over an interval along
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a given coordinate. As a result of this integration the PDE converts

into a nonhomogeneous first-order ODE whose solution can be writ-

ten in terms of its homogeneous and particular solutions via the gen-

eral theory of first-order ODEs. The method proposed in this work

uses the exact integral solution of the first-order ODE to obtain the

algebraic nodal equations of the second-order PDE, and it is different

in that sense from previous methods. The examples presented in this

paper are however limited to one-dimensional convection–diffusion

problems, that is, second-order ODEs.

There have been several attempts to use the exact solution of

a transport equation in the derivation of the algebraic coefficients.

The pioneering paper is that of Raithby at al. [1] in which they as-

sessed the sources of errors in their 2D discretization by comparing it

with the local unidirectional exact solution in which all cross-stream

fluxes were lumped together into a pseudo-source. This source was

constant in the interval between two consecutive nodes and the co-

efficients at the interface prevailed over the whole interval length.

Based on this they proposed LOADS (Locally Analytic Differencing

Scheme) where they made the exact equation to match the values

at two consecutive nodes, thereby obtaining the numerical fluxes for

each face of the control volume and, by summing up the fluxes, an

algebraic equation for every node. This scheme basically was a con-

servative extension of the Allen and Southwell scheme [2] which was

nonconservative. Thiart [3,4] used a collocated grid to implement the

same idea for the Navier–Stokes equations. In the first paper only the

external source was considered to form part of the exact solution but

in the second he also included the cross-stream terms in the mod-

ified source. In these two papers the source was constant in every

subinterval that belonged to a control volume and discontinuous at
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the interfaces. Harms et al. [5] and later Wang et al. [6] extended this

scheme to interfaces not located midway between two consecutive

nodes as Thiart’s scheme required.

In the early 1990s two schemes that used the exact solution were

LECUSSO (locally exact consistent upwind scheme of second order)

and LENS (locally exact numerical scheme) [7,8]. The second one

can deal with a wider range of problems because the exact solu-

tion for a constant-coefficient, linear absorption, polynomial-source

ODE was employed in its derivation. When the absorption is zero and

the source is constant LENS transforms into LECUSSO. All algebraic

coefficients are obtained by adjusting the exact solution over five

nodes. Later Sakai put forward an optimized version of both [9,10].

A final improvement of LENS was to incorporate four different zones

of piecewise-constant diffusion and absorption coefficients within a

three-node region [11]. A linearly varying diffusion and absorption

coefficients were also considered by Kriventsev et al. [12].

In order to mimic the exact solution a set of methods used a test

function inside the control volume that contained a sum of three

terms: a constant, an exponential of the Péclet number based on a

local coordinate x and a linear term of the same. The associated con-

stants were determined by requiring the function to pass through the

nodal values. All of them were logical inhomogeneous extensions of

the exponential scheme which is known to be exact in 1D with con-

stant coefficients and no source. The third term appeared because the

exact solution with a constant source in the control volume contains

a linear term related to the source. Amongst these approaches is the

UNIFAES scheme [13,14] and the scheme adopted by Sheu et al. [15].

In the latter a linear absorption term was also included. The UNIFAES

was again based in Allen and Southwell scheme with the constant

in the source-related term being linearly interpolated at the interface

from its values at the nodes, these latter obtained following Allen and

Southwell’s idea. This interpolation makes the whole scheme conser-

vative yet it is based on a nonconservative one.

Because they have sparked lines of research of their own it is ade-

quate to comment apart on two general approaches that employ in

one way or another the exact solution: the finite analytic method

(FA) [16,17] and the nodal integral method (NIM) [19,20]. The main

idea of the FA method is applicable to any unsteady multidimensional

transport equation. A local domain is considered around a generic

node P. For any spatial boundary the method assumes that the so-

lution contains the same three terms as before as well as a linear

time dependence in the temporal boundaries. These boundary con-

ditions are written in terms of the boundary nodes (those surround-

ing P). Applying separation of variables one is able to obtain the ex-

act solution in the local domain. With this solution the coefficients

that should multiply the boundary values to obtain the value at P can

be obtained. For a detailed description and many applications of the

FA method see [18]. NIM, on the other hand, uses the exact solution

with constant coefficients to derive the solution of the variable ob-

tained by line-averaging the original equation around P, either spa-

tial or temporal. For instance, in a 1D spatial domain NIM integrates

the variable over the spatial or the temporal coordinate producing

two ODEs, one for the mean spatial value around P and other for the

mean temporal value. All terms with derivatives with respect to the

other coordinates are lumped into a pseudo-source term. The inte-

gration of this pseudo-source is performed by Legendre polynomi-

als truncated at the desired degree. NIM then uses the exact solution

to obtain that of these two first-order ODE, written in terms of the

variable at the nodes. By algebraically manipulating these expres-

sions and applying continuity constraints NIM is able to derive two

coupled algebraic equations for both nodal means with a three-node

stencil.

As a resumé, almost all attempts to use the exact solution of a

nonhomogeneous convection–diffusion equation as a base for dis-

cretization schemes have been with constant coefficients and very

simple polynomial sources. In this short review the only schemes that

employ a varying diffusion coefficient are those of Sakai et al. [11] and

Kriventsev et al. [12]. None of them considered varying convective

flux even though in 2D or 3D the mass flux varies along a coordinate

even if the divergence of the mass flux is zero.

In a former paper the first author developed a scheme named

ENATE for a transport equation with constant coefficients that can

handle arbitrary sources as long as they have continuous derivatives

of any order in the working interval [22]. In this paper the exact inte-

gral solution of the transport equation is employed to extend this idea

to arbitrary coefficients. The idea followed in this paper is very close

to that proposed by ten Thije Boonkamp and Anthonissen [21] in its

FV-CF scheme (finite volume-complete flux). They look for an inte-

gral representation of the homogeneous and inhomogeneous fluxes

at control volume faces of a general steady conservation law in terms

of the nodes that share the face. It can be checked that the integrals

involved in both fluxes are the same as those that can be derived

from the approach presented in this paper, apart from the very dif-

ferent nomenclature employed and the path taken for its derivation.

It could not be otherwise as the solution of an inhomogeneous ODE

with given boundary conditions is unique. The main differences with

this paper are that they work with fluxes at the faces and we work

with the exact solution between nodes that allows us to present the

scheme in terms of an algebraic equation with three nodes. The co-

efficients of this algebraic equation are clearly defined in terms of in-

tegrals between nodes which facilitates their coding. On top of that,

when it comes to computing the several cases presented, ten Thije

Boonkamp and Anthonissen assume linear dependencies of the inte-

grand, that is, the standard trapezoidal rule for integral evaluation,

which overly reduces their accuracy.

This paper is structured as follows: firstly, the integral solution to

a homogeneous transport equation will be derived. Then, how to deal

with the source in a nonhomogeneous equation will be described. As

the complete solution is the sum of the homogeneous and the partic-

ular solutions, the latter in integral terms will eventually be obtained

in this section. The complete solution will then be employed to ob-

tain the algebraic connections between nodes and the extra terms

due to the source, with some discussion on the asymptotic regime

of mesh Péclet going to infinity. The accuracy of the discretization is

connected to a numerical integration problem and some integration

alternatives employed in this paper will then be described. Finally

the approach is applied to three test cases with spatially varying con-

vective flux, diffusion coefficient and/or source, showing its excellent

behaviour.

2. Integral solution of a 1D homogeneous transport equation

The nonhomogeneous convection–diffusion equation with vari-

able coefficients can be written as

d

dx

(
ρυφ − �

dφ

dx

)
= S; ρυ = ρυ(x); � = �(x); S = S(x)

(1)

In this section we will derive the integral solution of the homoge-

neous equation, S = 0, and its simplified variants, some of them well

known. This integral solution is later employed as a constituent part

of the solution of the general nonhomogeneous equation with arbi-

trary source. As will later be seen the homogeneous solution partly

contributes to the coefficients that connect nodal values in the final

algebraic equation.

The domain is split in N intervals, not necessarily of equal length,

and N + 1 nodes with locations xi, i = 0, . . . , N, with two nodes at the

boundaries, x0 and xN. In order to obtain the homogeneous solution

in every generic interval with left boundary (lb) and right boundary

(rb), it is more convenient to work with normalized variables, defined

as
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