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a b s t r a c t

We consider surfactant transport on moving and deforming fluid interfaces with main emphasize on the
case of mixtures of several surfactants. Since the interface can be significantly covered by surfactants, the
model incorporates cross-effects in terms of both cross-diffusion as well as non-idealities of the surfac-
tant mixtures. This is accounted for by means of the interfacial Maxwell–Stefan equations with appropri-
ate thermodynamic driving forces.

Our numerical method for detailed computation of surfactant transport is based on the collocated
Finite Area Method on meshes of general topology, including automatic mesh motion and remeshing
methods to allow for strongly deforming interfaces. This allows for mass conservative solution of the
interfacial transport equations, which are solved in a block-coupled manner to accurately describe the
cross-effects. The diffusive fluxes, which are to be inserted into the system of surfactant balances, come
from an iterative inversion of the Maxwell–Stefan equations. The cross-effects lead to heterogeneous dif-
fusivities, which in turn can cause numerical instabilities at increasing heterogeneity. Therefore, we pro-
pose an enhanced discretization procedure which is easy to implement for the finite area diffusion
operator, yielding numerical conservation, robustness and boundedness. While the method can be
extended to soluble surfactants in a straightforward manner, we focus here on the insoluble case.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In dispersed gas–liquid or liquid–liquid systems, surfactants are
commonly present on the fluid interface, either on purpose as
additives or as surface active constituents of the bulk mixture or
in form of impurities. In general, strongly coupled non-linear inter-
facial transport processes have to be considered, while the inter-
face itself is deformable and moving.

Direct Numerical Simulation (DNS) of interfacial transport pro-
cesses comprising multiple surfactants poses severe challenges to
the underlying numerical method. The system is described by the
two-phase Navier Stokes equations and appropriate interfacial
jump conditions and the transport equations for the surfactants
in the bulk and on the interface. Since surfactants accumulate at
the interface, their area concentration is large such that
cross-effects become relevant and the diffusive fluxes become
interdependent. The system is to be described by the surface
Maxwell–Stefan equations for multicomponent diffusion, resulting
in a significant coupling of interfacial surfactant transport equa-
tions by the diffusive terms. Moreover, the transport of surfactants

within the bulk phases and on the interface is typically coupled
through sorption processes.

DNS of surfactant transport on fluid interfaces involves the
numerical solution of surface PDEs, in particular advection–
diffusion equations on moving/evolving surfaces. The existing
methods for the DNS of two-phase flow can be categorized into
Lagrangian interface tracking and Eulerian interface capturing
approaches. While the first represent the interface in an explicit
manner, in particular by resolving the interface with a surface
mesh, the latter exhibit an implicit interface representation for
which color or marker functions are introduced characterizing
one of the fluid phases or the interface itself. The methods
describing the numerical solution of surface PDEs are equally
sub-categorized into Eulerian and Lagrangian methods. Since the
majority of publications are motivated by surfactant transport pro-
cesses, for the following literature review, we do not distinguish
between methods for general surface PDEs and developments
particularly regarding surfactants but give a general overview.

For Eulerian interface capturing approaches (e.g., Level-Set
methods, Volume-of-Fluid methods, etc.) the field describing the
interfacial transport quantity is extended from the interface into
the adjacent volume. First developments of numerical methods
for the solution of surface PDEs for Level-Set methods [1–4] are
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based on stationary predefined Level-Set distributions [5–8]. Adal-
steinson and Sethian [9,10] describe a method for solving partial
differential equations on moving interfaces, considering both diffu-
sive and advective transport on interfaces which are subject to
stretching and shrinking. Xu and Zhao [11] extended the surface
quantity within a narrow band around the interface, solving for
advection and diffusion on a fixed Cartesian grid with a predefined
velocity field. In a subsequent study ([12]), the interfacial transport
method was coupled to a flow solver for incompressible Stokes
flow. Also based on Level-Set methods, the surface PDEs are solved
on discrete representation of the interface in form of a piecewise
planar interface by Olshanski and Reusken [13]. Dziuk and Elliott
[14] solve the partial differential equation on all level set surfaces
by formulating an appropriate weak form of the conservation law
with respect to time and space. Kallendorf et al. [15] provide a con-
served formulation of the surface transport equation, building on
the direct method of Anco and Bluman [16–18].

Volume-of-Fluid methods (cf. [19–21]) have been extended to
cover the influence of insoluble surfactants on droplet deformation
processes [22,23]. James and Lowengrub [24] show a method with
exact mass conservation of the surfactant, where the evolution of
the interfacial area and the surfactant mass are calculated sepa-
rately. This work was combined with the Volume-of-Fluid method
of Rudman [25] by Davidson and Harvie [26] and applied to rising
droplets. A further enhancement of the method of James and
Lowengrub [24] was published by Yang and James [27], in combi-
nation with the hybrid CLSVOF [28] method, which combines the
strengths of both method. The evolution of the surfactant mass is
computed applying an ALE (Arbitrary Lagrangian Eulerian)
method. In [29], Alke and Bothe present a method for soluble sur-
factants, which is appropriate for diffusion controlled sorption pro-
cesses. There, an iso-surface is constructed, on which the
interfacial concentrations are explicitly evaluated from a prede-
fined sorption isotherm and then transported on this temporal sur-
face mesh according to the interface PDE.

Narrow-band methods for solving interfacial transport equa-
tions based on the diffuse interface approach (cf. [30,31]) are
described in [32–36].

Lagrangian interface tracking approaches are combined with a
variety of discretization procedures to allow for the numerical
solution of surface PDEs. Boundary integral methods [37,38] are
one representative of interface tracking methods. The interface is
represented by a deforming surface mesh. It has been enhanced
to account for the influence of insoluble [39–45] and soluble
[46–48] surfactant on drop or bubble deformation. Dziuk and Elli-
ott [49] propose a surface finite element method to solve the
Laplace–Beltrami equation on triangulated surface meshes on sta-
tionary surfaces. In order to account for moving interfaces, the
method was extended towards an evolving surface finite element
method in [50] for predefined moving surfaces and has been
applied to application cases [51]. The recent publication [52] pro-
poses a second-order iso-parametric surface finite element method
on moving meshes. Based on Front Tracking methods [53–56],
Yamamoto et al. [57] and Zhang et al. [58] developed axisymmetric
methods for fluid flow containing surfactant. Muradoglu and Try-
ggvason [59] and Tasoglu et al. [60] applied a finite difference
method for solving the surface PDE on top of a surface mesh
defined by a set of connected Lagrangian marker particles. Both
insoluble and soluble surfactants are covered. Based on an Arbi-
trary Lagrangian Eulerian (ALE) Interface-Tracking method
[61,62], Tuković and Jasak developed a Finite Area Method (FAM)
on unstructured, moving and deforming surface meshes [63]. The
present contribution is solely concerned with the interfacial trans-
port of multiple surfactants. Our numerical method is based on the
Finite Area Method [64,63] and is extended towards dynamic sur-
face meshes, which are topologically changing to follow the

deforming interface. Focus is on numerical aspects of the method
development, such as conservativity and boundedness properties
arising from the equation discretization procedure as well as
robustness, i.e. stability and convergence properties, of the numer-
ical solution procedure. The complete problem with its full com-
plexity (including the hydrodynamics, the surface transport and
the sorption processes) is out of scope here and shall be addressed
in a forthcoming publication; see also [65]. The mere hydrodynam-
ics have been presented previously [66].

The numerical evaluation of the surface diffusive fluxes from
the Maxwell–Stefan equations is based on the procedure for gas
mixtures. While some authors present direct methods, others
apply the so-called Curtis–Hirschfelder approximation [67–69].
In the following we will apply the iterative inversion algorithm
of Giovangigli [70]. After inversion, the discretization of the diffu-
sive fluxes needs careful consideration, involving strategies for het-
erogeneous diffusivities. A great variety of discretization strategies
for heterogeneous diffusivities exists in the literature concerning
diffusivity tensors instead of scalar diffusivities. Aavatsmark et al.
[71–73] propose a linear method on quadrilateral two dimensional
meshes, which is flux conservative. It generalizes the principle of
harmonic averaging applied with a two-point flux molecule (five-
point cell molecule) for orthogonal meshes and a six point flux
molecule (nine-point cell molecule) for non-orthogonal meshes.
The method is extended towards triangular and polyhedral grids
in [72] introducing linear multi-point flux methods (MPFM). The
method is discussed together with the numerical results in [73].

Eymard et al. [74] construct a finite volume scheme based on
the weak solution of the steady state anisotropic diffusion equa-
tion. The strategy is based on the construction of approximate gra-
dients using so-called Raviart–Thomas shape functions. Since these
can only be applied to triangular and quadrilateral meshes, the
method was enhanced to general unstructured meshes [75],
accounting for the irregularity of the mesh. The discrete gradients
converge weakly to the exact gradient as proven in [76]. In [77], a
hybrid finite volume (HFV) scheme has been introduced for any
space dimension, which is dependent on both the cell- and the
edge-based variables.

Portier [78] developed a non-linear Finite Volume Method for
highly anisotropic diffusion operators on unstructured meshes.
The gradients are evaluated on the vertices employing cell-cen-
tered and face-centered unknowns. A flux continuity condition is
enforced and the resulting coefficient matrix is symmetric and
positive definite.

The mixed finite volume scheme for anisotropic diffusion prob-
lems was introduced in [79] and is applicable to strongly aniso-
tropic diffusion problems on any grids also based on weak
solutions. Here both the fluxes and the cell-centered values are
treated as unknowns. Breil and Maire [80] introduce a cell-cen-
tered diffusion scheme for two-dimensional unstructured meshes,
employing cell-centered unknowns only. A local stencil is assem-
bled and the scheme results in a sparse-banded, symmetric and
positive definite diffusion matrix. The method can be applied on
triangular and quadrilateral two-dimensional meshes, converging
with second-order for the first and with almost second-order accu-
racy for the latter mesh type. However, the method is only valid for
anisotropic diffusion tensors, while heterogeneities have not been
covered.

Based on so-called mimetic finite difference methods (MFD),
Brezzi et al. [81] introduce a family of simple discretization
schemes on generalized polyhedral meshes, showing super-con-
vergence. Another cell-centered scheme called SUCESS is intro-
duced in [82,83] for incompressible Navier–Stokes equations.
Both are very effective, since only a small stencil is necessary,
while lacking accuracy compared to the hybrid schemes (HVF,
MVF and MFD). The combination of SUCESS with hybrid schemes
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