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a b s t r a c t

The laminar fully developed magnetohydrodynamic (MHD) flow of a liquid metal into a curved pipe of
circular cross section, subjected to a transverse external magnetic field, is studied. Three different formu-
lations are used for the implementation of the electromagnetic variables. The extended Continuity
Vorticity Pressure (CVP) numerical variational method for MHD flows is used for the coupling of the
momentum and the continuity equation. Results are obtained for different values of the curvature
(0–0.2) and of the Hartmann number (0–1000). The magnitude of the axial velocity is determined by
the balance of the centrifugal and the electromagnetic forces. The results reveal the limits of applicability
of the used electromagnetic models as the Hartmann number increases.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In magnetohydrodynamics (MHD), the motion of the electrically
conducting fluids is studied under the effect of strong magnetic
fields and involves many applications as internal, unbounded, free
surface and ferrofluid flows. MHD liquid metal flows, subjected to
strong external magnetic fields, are met in many practical applica-
tions related to fusion reactors, electromagnetic pumping, power
generation and other engineering applications. Various designs of
these applications involve curved ducts. The content of the present
paper is focused on the MHD flow of a liquid metal within a curved
circular pipe, as part of a cooling system for fusion reactor blankets
for moderate values of curvature.

The solution of the Maxwell equations on a toroidal–poloidal
geometry on MHD flows has been widely studied on astrophysical
or plasma MHD problems (e.g. [1]), but only few theoretical and
experimental research works have been published up to today on
laboratory/industrial scale MHD channel flows on curved ducts
(highly viscous and low magnetic Reynolds flows). Kobayashi [2]
studied the effect of a perpendicular external magnetic field on
the secondary vortex flow of a curved channel, for small
Hartmann numbers up to 20, showing that the primary flow is
stabilized by the magnetic field effect. Sudou et al. [3] performed

a theoretical and experimental analysis for the flow of a liquid
metal in a curved circular channel for small Hartmann numbers
up to 20 and small curvatures. Their results show that as the mag-
netic field increases, the secondary flow is suppressed by the mag-
netic field and the velocity profile comes up to that in straight
channels. The laminar MHD flow in a rectangular curved channel
is studied by Tabeling and Chabrerie [4] at intermediate
Hartmann numbers, using an approximate analytical perturbation
method. Issacci et al. [5] studied the MHD flow in a circular
channel using an approximate analytical method for small and
intermediate Hartmann numbers and small curvatures. Moresco
and Alboussière [6] with an experiment, and Vantieghem and
Knaepen [7] with numerical simulation, studied the MHD flow
on a closed toroidal loop of a square curved duct driven by an
electric current at laminar and turbulent conditions. More specific,
they studied the instability conditions for the Hartmann layer for
small and intermediate Hartmann numbers (Ha 6 400Þ.

On the other hand, a great number of numerical studies for the
fully developed MHD flows on straight ducts have been carried out
in conducting or insulated channels within the finite-difference or
the finite-element methods, e.g. [8–14] or the finite volume
method on a collocated grid [15]. These methods differ in using
two basic electromagnetic models, the electrical potential formula-
tion (/-formulation) or the induced magnetic field formulation
(b-formulation), implementing different boundary conditions.

Hatzikonstantinou and Bakalis [16], investigating numerically
the MHD flow in a straight insulated circular annular duct,
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determined the limits of applications of the low magnetic Reynolds
number electrical field formulation (/-formulation), the hybrid
h-formulation and the induced magnetic field formulation
(b-formulation). It was found that the b-formulation has some
advantages for moderate values of Ha 6 500, due to the accurate
estimation of the transverse components of the induced magnetic
field and of the transverse velocity components. However the sim-
plified h-formulation yields to satisfactory results for Ha P 500,
due to the fact that the transverse components of the induced mag-
netic field and of the velocity field are reduced dramatically as the
Hartmann number increases to very high values.

The forced laminar fully developed magnetohydrodynamic
(MHD) flow of a liquid metal moving in a curved circular channel,
under the action of the axial pressure gradient and the effect of an
external transverse magnetic field, is studied numerically at the
present paper for the first time. This configuration could be a
section of a bend or a turn of the fusion reactor blanket access
ducts piping system [17,18]. The electromagnetic variables will
be implemented with three different formulations. Results are
presented for the curvatures j ¼ 0:0;0:05;0:1;0:2 and Hartmann
numbers in the range of 0 6 Ha 6 1000. The computational
method that was used to solve the Navier–Stokes and
continuity equations was the Continuity Vorticity Pressure (CVP)
method, which has been developed by Papadopoulos and
Hatzikonstantinou and is analytically presented for 2D, quasi 3D
and fully 3D flow patterns in [18]. The method has already been
validated and tested in MHD channel flows in straight [16,20]
and curved channels [21].

2. Problem formulation

We consider a curved duct of circular cross section, of radius R
and of radius of curvature Rc (see Fig. 1a), as part of a cooling sys-
tem structure. An incompressible electrically conducting liquid
metal flows in the pipe, under the effect of an external vertical

and upward directed transverse magnetic field~Bo, which is applied
for the confinement of the plasma inside the fusion reactor. The
walls are assumed to be electrically insulated.

The MHD flow is governed by the following set of
non-dimensional equations:

Continuity equation

~r � ~V ¼ 0 ð1Þ

Momentum equation

@~V
@t
þ ~V � ~r
� �

~V ¼ �~rP þ 1
Re
r2~V þ Ha2

Re
ð~J �~BÞ ð2Þ

Magnetic induction equation

@~B
@t
þ ~V � ~r
� �

~B ¼ 1
Rm
r2~Bþ ~B � ~r

� �
~V ð3Þ

Divergence free equation for the magnetic field

~r �~B ¼ 0 ð4Þ

Ohm’s law

~J ¼ �~rUþ ~V �~B ð5Þ

Ampère’s law

~J ¼ 1
Rm

~r�~B ð6Þ

Divergence free equation for the electric current density

~r �~J ¼ 0 ð7Þ

The use of the relations (5) and (6) depends on the electromagnetic
formulation which is going to be used.

In the aforementioned Eqs. (1)–(7), ~V is the velocity, P is the

pressure, ~B ¼~Bo þ~Bi is the total magnetic field, given by the sum-

mation of the external ~B0 and the induced ~Bi magnetic field, U is

the electric potential and~J is the electric current density.
The toroidal–poloidal coordinate system r; h; zð Þ of Fig. 1a is con-

sidered, which is connected to a Cartesian reference system
x0; y0; z0ð Þ via the transformations x0 ¼ Rc þ r cos hð Þ cos z=Rcð Þ;

y0 ¼ r sin h and z0 ¼ Rc þ r cos hð Þ sin z=Rcð Þ, where 0 6 r 6 R;
0 6 h < 2p and 0 6 z 6 2pRc .

Eqs. (1)–(7) were made dimensionless using the scales

r ¼ r0
R0 ; t ¼ t0V 00

R0 ; z¼ z0
R0 ; Rc ¼ R0c

R0 ;
~V ¼ ~V 0

V 00
; P ¼ P0

qV 020
; ~B¼ ~B0

B0o
; ~J ¼ ~J0

rV 00B0o
and

the following parameters: the Reynolds number Re¼ V 0oR0=m, the
Hartmann number Ha¼

ffiffiffiffiffiffiffiffiffiffiffiffi
r=qm

p
B0oR0 and the magnetic Reynolds

number Rm ¼ lrV 0oR0, where the prime ‘‘0’’ denotes the dimensional
variables. On the above scales, R0 is the dimensional radius of the
circular cross section of the duct, q is the fluid density, m is the
kinematic viscosity of the fluid, V 00 is the reference velocity, which
is equal to the magnitude of the dimensional axial velocity, r is the
electric conductivity and l is the magnetic permeability of the liq-
uid metal, B0o is the reference magnetic field, which is equal to the

magnitude of the dimensional external magnetic field ~B0o ¼ B0oŷ,
where ŷ is the unit normal vector in the Cartesian y0-direction.

In the internal fully developed forced laminar flows all variables
~V ¼ uêr þ v êh þwêz,~B and~J are independent of the axial coordinate
z, except for the pressure. Hence all the axial derivatives are
neglected except for the axial pressure gradient pa;z � @paðzÞ=@z,
which is regarded as uniform over the cross section and is updated
during the iterative procedure by the mass conservation equation,
so that the mean value of the axial velocity will be equal to �w ¼ 1
[16,19,22]. The flow is subjected to a non-dimensional

external constant magnetic field ~Bo ¼ ðBor ;Boh;0Þ, where
Bor ¼ sin h;Boh ¼ cos h. The induced axial magnetic field is
~Bi ¼ Birêr þ Bihêh þ Bizêz, so that ~B ¼ ~Bo þ~Bi ¼ Brêr þ Bhêh þ Bzêz,

and the produced total electric current density is ~J ¼ Jr êrþ
Jhêh þ Jzêz. Here, we define êr; êh; êz as the orthonormal basis in tor-

oidal–poloidal coordinates. Also, it occurs that ~r�~Bo ¼ ~0, because
the external magnetic field is constant and it is generated by a non

conducting media and, consequently, r2~Bo ¼ ~0, since ~r� ~r�
~Bo ¼ ~r~r �~Bo �r2~Bo ð~r �~Bo ¼ 0Þ.

Hence, introducing the term I ¼ 1= 1þ jr cos hð Þ, where
j ¼ 1=Rc is the curvature, the governing equations of the MHD flow
take the following form:

Continuity equation

x

y

z

z

'

'

'

Fig. 1a. Toroidal–Poloidal coordinate system.
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