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a b s t r a c t

Extreme free surface elevations due to wave-structure interactions are investigated to second order using
Quadratic Transfer Functions (QTFs). The near-trapping phenomenon for small arrays of closely spaced
columns is studied for offshore applications, and the excitation of modes by linear and second order inter-
actions is compared. A simple method for approximating near-trapped mode shapes is shown to give
good results for both linear and second order excitation. Low frequency near-trapped mode shapes are
shown to be very similar whether excited linearly or to second order. Approximating surface elevation
sum QTF matrices as being flat perpendicular to the leading diagonal is investigated as a method for
greatly reducing lengthy QTF calculations. The effect of this approximation on second order surface ele-
vation calculations is assessed and shown to be reasonably small with realistic geometries for
semi-submersible and tension-leg platforms.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The phenomenon of near-trapping is a near-resonant local
response excited by free-surface waves of a certain frequency inter-
acting with arrays of obstacles such as vertical surface-piercing col-
umns (see [14,4,5]) or with other geometries, including single
bodies. Each near-trapping frequency is associated with a mode of
strong local free surface oscillation which decays rather slowly in
time due to wave radiation to infinity. However, the excitation peri-
ods of all but the lowest one or two near-trapped modes are usually
too short to be significantly excited linearly by typical storm waves
for most multi-column bodies as large as semi-submersible or
tension-leg platforms. Non-linear wave responses can arise from
various effects, such as the velocity squared term in the Bernoulli
equation for pressure, and other non-linearities in the free surface
boundary condition. The lowest order non-linear force is at sum
and difference combination frequencies of the component incident
wave frequencies. Second order sum frequency excitation of the
higher near-trapped modes by waves with an incident period twice
as long as the mode excitation period can form a large component of
extreme wave-structure interactions [21,9]. Since second order
responses can cause such a large contribution to the overall surface

elevation, linear calculations are not sufficient to accurately model
extreme wave-structure interactions. One must include second
order contributions, despite the large increase in computational
complexity, and the use of quadratic transfer functions (QTFs) is
one possible method of modelling the second order responses in
real sea-states. Quadratic transfer functions (defined below) are
convolved with the incident surface elevation spectrum to give
the response surface elevation spectrum, using the standard Vol-
terra series approach described, for example, by Schetzen [18].

1.1. Transfer functions

Potential flow theory is used here to describe the incident
waves, and the wave scattering by the structure. The unknown
velocity potential, satisfying a non-linear boundary condition, is
expressed as a perturbation expression in wave steepness, trun-
cated at the second order terms (i.e. terms quadratic in wave

amplitude). Eq. (1) describes the linear response elevation gð1ÞR to
two incident waves with amplitude Ai m, angular frequency xi

rad/s, and phase wi rad, where i ¼ 1; 2 and bi is the linear transfer
function (LTF) at frequency xi. The second order response compo-
nents are then given by Eq. (2) with the QTFs for the potential sum
term bPS, quadratic sum term bQS, potential difference term bPD, and
quadratic difference term bQD. This decomposition into quadratic
and potential terms has been widely used by others to facilitate
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interpretation and verification of computed results (see, for exam-
ple, early examples in [11,1]). The quadratic terms refer to the sim-
ple local product of two first order incident wave components.
Potential terms arise from the inhomogeneous equations for the
fluid velocity potential at second order and are driven by the inter-
actions between pairs of incident frequency components. These are
associated with the generation and propagation of free waves out
to infinity as well as local contributions close to the structure.
Sum terms refer to response at a frequency equal to the sum of
the incident frequencies, xR ¼ xi þxj, (i.e. double the incident
frequency for the self-interaction) and the difference terms refer
to a response at xR ¼ xi �xj.

gð1ÞR ¼ b1g1 þ b2g2 ¼ Rfb1A1e�iðx1tþw1Þ þ b2A2e�iðx2tþw2Þg ð1Þ

gð2ÞR ¼ RfðbPS þ bQSÞA1A2e�iððx1þx2Þtþw1þw2Þg
þRfðbPD þ bQDÞA1A2e�iððx1�x2Þtþw1�w2Þg

ð2Þ

Here R indicates that the real part is taken.
The quadratic transfer functions (QTFs) can be found using

boundary element potential flow codes such as WAMIT (see
[12,17]) or the Oxford code DIFFRACT (see [2,22,3]). These lead to
the total surface elevation to second order in the vicinity of a struc-
ture for a given incident wave. Calculation of QTFs can be very
computationally intensive and so it would be beneficial if a reason-
able approximation could be found which reduced the number of
QTF calculations necessary. Linear calculations are quick and cheap
but have been shown to be insufficient when modelling extreme
wave structure interactions, see for example Walker et al. [21],
and Stansberg [19]. Calculation of each QTF not only takes much
longer than for LTFs, but for an incident wave surface elevation
spectrum with N frequency components one needs to fill four
N � N matrices to cover the second order interactions between
all possible pairs of frequency components. Use of symmetry when
populating each matrix of QTFs can be used to reduce the number
of calculations from N2 to NðN þ 1Þ=2 (the leading diagonal plus
one side) but this is still computationally expensive.

Taylor et al. [20] introduced a near-flat sum QTF matrix approx-
imation for surface elevation around cylinder arrays. The authors
observed that at low frequencies the sum QTF is a strong function
of the output frequency (xS ¼ xi þxj) and virtually independent
of the frequency difference (xD ¼ xi �xj), which is the distance
away from the leading diagonal. This observation means that the
whole QTF matrix might be approximated using only the leading
diagonal. It would allow a reduction of the number of QTF calcula-
tions from NðN þ 1Þ=2 to N. This observation has the same empir-
ical form as the Newman [16] approximation for difference
frequency forces in vessels in irregular waves but Taylor et al.
showed that a similar form of approximation is possible in second
order sum surface elevation QTFs for arrays of cylinders. This
approximation is investigated further to assess whether it is rea-
sonable for use in wave-structure interaction analysis for certain
types of configuration such as semi-submersible and tension leg
platforms.

2. Near-trapped modes

Before beginning the lengthy process of calculating quadratic
surface elevation transfer functions it is important to investigate
the incident frequencies most likely to give a violent response.
By finding the near-trapped mode frequencies for a given structure
one can then plan the frequencies at which transfer functions
should be calculated to give a reasonable model of extreme
wave-structure interactions. The structure under study here is a
simplified version of a typical large offshore platform. It consists

of four vertical bottom-seated circular columns of radius
a = 12.34 m, in water of depth 30 m, and with centres located at
(�41:42 m, �41:42 m). Fig. 1(a) shows the mesh for this simplified
four circular column model and Fig. 1(b) shows the boundary mesh
for a more realistic offshore structure. Only one quadrant is shown,
as two planes of symmetry are assumed to minimise computation
time. Analysis with the mesh in Fig. 1(b) will be discussed later. To
identify the near-trapped frequencies for the simplified structure
in Fig. 1(a) the method of Linton and Evans [13] was used, leading
to thirteen near-trapped modes with a wavenumber less than
0.3 m�1. Open ocean wave components with wavenumbers greater
than this would have minimal energy and are therefore not
considered.

It is also possible to identify complex wavenumbers at which
theoretically a phenomenon of pure trapping occurs (with no radi-
ation of waves away from the body). The method of Linton and
Evans [13] makes use of a truncated infinite Fourier–Bessel series
to model the total wave field including wave-structure interac-
tions. When the matrix of coefficients associated with this trun-
cated infinite series has a value of the determinant close to zero,
a particularly violent response can occur. If a wavenumber leading
to a zero in this determinant is real then pure-trapping has
occurred. However, this only occurs for particular special geome-
tries. In contrast, a much wider range of geometries leads to the
phenomenon of near-trapped modes. The wavenumbers leading
to zeros in the determinant are often complex and near-trapping
may be thought of as the situation closest to pure-trapping if one
sets the imaginary part of these complex wavenumbers to zero.
The size of the imaginary part gives a measure of the wave damp-
ing due to radiation to infinity. The modes with the smallest imag-
inary wavenumber components are closest to pure-trapping with
rather weak radiation leaking out to infinity and are therefore
likely to have very large responses when excited by incoming
waves. Detailed discussion on the linear excitation of these
near-trapped modes for the same structure as considered here is
given in Section 3 of Grice et al. [8]. A list of the predicted complex
trapped mode wavenumbers is given in Table 1, which shows the
real and imaginary parts of the wavenumber, normalised by col-
umn radius, and the associated period and wavelength for the sim-
ple four bottom-seated circular columns described above.

The first and lowest mode predicted has a normalised
wavenumber of Re (ka) = 0.324 which for the geometry described
above corresponds to an excitation period of 12.38 s. Typical storm
waves on the open ocean have a peak period in the range
Tp ¼ 12� 15 s. This means that the lowest few modes could be sig-
nificantly excited linearly. For the higher modes the sea-state
would have too little spectral energy for near-trapping to be
excited through linear excitation. From a practical point of view,
having found the near-trapped mode frequencies at which violent
wave-structure interactions are most likely to occur, it is then use-
ful to investigate the mode shapes, as this may lead to identifica-
tion of the locations within the array where water-deck impact is
most likely to occur.

2.1. Mode shape approximation

A method of approximating the shape of the free surface
(termed the response) for a near-trapped mode is presented here.
Using the method of Linton and Evans [13] to predict the
near-trapped mode frequencies for arrays of cylinders, the associ-
ated mode shapes can be obtained based on series expansions. For
more general multi-column configurations such as
semi-submersibles, an alternative approach is desirable. The
near-trapping frequencies may be obtained by observing peaks in
the plots of characteristic parameters such as forces or local wave
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