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Recently it has become increasingly clear that the role of numerical dissipation, originating from the
discretization of governing equations of fluid dynamics, rarely can be ignored regardless of the formal
order of accuracy of a numerical scheme used in either explicit or implicit Large Eddy Simulations
(LES). The numerical dissipation inhibits the predictive capabilities of LES whenever it is of the same
order of magnitude or larger than the sub-grid-scale (SGS) dissipation. The need to estimate the numer-
ical dissipation is most pressing for low-order methods employed by commercial CFD codes. Following
the recent work of Schranner et al. (2015) the equations and procedure for estimating the numerical
dissipation rate and the numerical viscosity in a commercial code are presented. The method allows to
compute the numerical dissipation rate and numerical viscosity in the physical space for arbitrary
sub-domains in a self-consistent way, using only information provided by the code in question. The
procedure has been previously tested for a three-dimensional Taylor-Green vortex flow in a simple cubic
domain and compared with benchmark results obtained using an accurate, incompressible spectral
solver. In the present work the procedure is applied for the first time to a realistic flow configuration,
specifically to a laminar separation bubble flow over a NACA 0012 airfoil at Ma = 0.4 and Re = 50, 000.
The method appears to be quite robust and its application reveals that for the code and the flow in ques-
tion the numerical dissipation can be significantly larger than the viscous dissipation or the dissipation of
the classical Smagorinsky SGS model.
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1. Introduction

Direct Numerical Simulations (DNS) of turbulent flows are
excessively computationally expensive for complex geometries
and/or high Reynolds number flows due to the wide separation
of physical scales that need to be resolved. A relatively successful
way to reproduce the dynamics of Navier-Stokes (N-S) equations
while reducing the number of degrees of freedom is the Large
Eddy Simulations (LES) approach. In LES the number of degrees
of freedom is reduced by means of a spatial filter that suppresses
the effects of small scales at the cost of introducing sub-grid scale
(SGS) unknowns (i.e. for the incompressible N-S the SGS stress
tensor) which must be explicitly modeled [27,29,14].

An alternative approach is to use the numerical dissipation orig-
inating from the discretization of the N-S equations as an implicit
LES (ILES) model. The strategy of using the numerical dissipation as
an implicit model relies on the hypothesis that the effect of the SGS
terms on the resolved scales is primarily dissipative [14]. This
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approach was proposed by Boris et al. [2] who utilized a
Flux-Corrected Transport (FCT) scheme. The FCT method assures
the monotonicity of the solution, which is why the original
approach was dubbed monotonically integrated LES (MILES).
This approach has been expanded to other monotonic and
non-monotonic schemes and has been more generally renamed
as ILES. An example of a non-monotonic ILES is the compact finite
difference scheme stabilized by filters [13]. For a thorough discus-
sion on the ILES approach one can refer to the ILES monograph of
Grinstein et al. [19]. The MILES approach has been controversial
and as such it has been the object of rigorous investigations
[15,11]. These studies have not been particularly encouraging.
Even when MILES appears to reproduce qualitatively the dynamics
of N-S equations, a more in-depth, quantitative investigation has
shown that this is not the case. Broadly speaking, these studies
present two scenarios. Either the numerical dissipation is excessive
with respect to the correct SGS dissipation leading to poor results
both in ILES and explicit LES (ELES) configurations [15], or the
scheme is under-dissipative (with respect to the correct SGS dissi-
pation) leading to good results for short time integrations and poor
results for long time integrations due to accumulation of energy in
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the high wave numbers [11]. The latter case can potentially be
adjusted either by filtering or with the addition of an explicit SGS
model [31]. These examples show that care is needed to design a
scheme that would produce accurate results with the ILES
approach, since there must be a mechanism embedded in the
numerics to ensure the correct amount of SGS dissipation. In
Chapter 5 of the ILES monograph Grinstein et al. [19], Rider and
Margolin suggest that not all non-oscillatory schemes make good
ILES models. Through the modified equation analysis of several
non-oscillatory schemes, Rider and Margolin show that a good
ILES must have a truncation error that exhibits a scaling consistent
with the scaling dictated by the physics of turbulence. In particular
the poor performance observed by Garnier et al. [14] is attributed
to the specific implementation of the scheme chosen for the
simulations. At any rate, the ILES approach has been gaining more
popularity due its simplicity and good qualitative results for speci-
fic flows, even if often lacking a detailed comparisons with DNS
results. In ILES the numerics are rarely designed in such a way that
the numerical dissipation matches, a priori, the physical SGS dissi-
pation. For a properly designed ILES such a matching should be
attempted at least for canonical turbulent flows, e.g., isotropic tur-
bulence or the turbulent channel flow. Whenever the numerics are
not constrained to reproduce the correct amount of numerical dis-
sipation, ILES may not provide even basic quantities correctly such
as the log-law of the wall or the skin friction. An example of a
proper ILES implementation is the adaptive local deconvolution
method (ALDM) of Hickel et al. [20], where the discretization is
based on a solution-adaptive deconvolution operator which allows
for control of the truncation error so that the numerical viscosity
matches the values predicted for isotropic turbulence by
turbulence theories. Early ELES studies pointed out that
low-order numerical methods are not suitable in the ELES frame-
work as the interaction between numerical dissipation and the
SGS dissipation [24] would negatively affect the results, while for
high-order/spectral methods the leading source of error is aliasing
of the non-linear term. In industrial applications the use of solvers
based on unstructured grid is almost compulsory, such solvers are
typically second-order (for specific examples refer to the collection
of solvers used in the LESFOIL project, Davidson et al. [9]).
Unstructured high-order solvers are usually prohibitively compu-
tationally expensive. With this in mind, efforts have been made
in order to reduce the numerical dissipation in low-order schemes.
For instance Camarri et al. [4] utilize a low-diffusion MUSCL-type
scheme on a finite volume tetrahedral grid stabilized by a numer-
ical diffusion term based on sixth order derivatives. Another exam-
ple is the low-dissipative third-order Taylor-Galerkin scheme of
Colin and Rudgyard [8].

Recently it has been shown that at very coarse resolutions even
formally high-order methods can suffer from the interaction
between numerical dissipation and SGS dissipation making the
addition of an ELES model detrimental to the performance of the
code [3].

Despite the issues mentioned above, flow simulations without
explicit LES models are becoming more and more popular. The rea-
son for this trend and the attractiveness of the approach are due to
several reasons: its simplicity; a resulting qualitative behavior that
mimics the dynamics of N-S equations; and the lack of a universal
explicit SGS model that could guarantee clearly superior results in
all situations. ILES results are often validated with experimental
results which may suffer from a high degree of uncertainty for
many complex flows of interest in engineering. Nonetheless, recent
comparisons between ILES, LES and DNS for Taylor-Green Vortex
simulations have shown that ILES approaches can outperform
explicit LES models (see Hickel et al. [20], Wachtor et al. [32],
Gassner and Beck [16]). Due to the increasing popularity of the
ILES approach it is prudent to make a formal distinction between

ILES schemes that are designed to provide the correct amount of
SGS dissipation and those that are simply run without an explicit
model, with no constraints imposed on the numerical dissipation.
We will refer to ILES schemes in the former case and to
under-resolved DNS (UDNS) in the latter.

Early attempts to quantify a priori the numerical dissipation of a
given numerical scheme were made by Hirt [21] through the
modified equation analysis. In the context of LES Ghosal [18] intro-
duced a kinematic analysis based on the ‘joint-normal hypothesis’
to estimate the numerical error in the non-linear LES equations.
This analysis suggested (as later confirmed by Kravchenko and
Moin [24]) that the aliasing error as well as the dissipation error
can be of the same order as the SGS terms. Fureby and Grinstein
[12] applied the modified equation analysis to draw a formal par-
allel between ILES and ELES. The first method to quantify a poste-
riori the numerical dissipation was proposed by Domaradzki et al.
[11]. This method relies on the use of a reference spectral-Fourier
solver and it is therefore limited to periodic domains. The idea of
effective, resolution dependent, Reynolds number has been used
by several authors in the past Porter et al. [28], Fureby and
Grinstein [12]. The effective Reynolds number was formally
defined by Aspden et al. [35] and more recently used by Wachtor
et al. [32] and Zhou et al. [33]. Zhou et al. [33] propose a method
to estimate the effective Reynolds number in ILES. The proposed
method relies on the existence of an inertial range and the idea
that the energy flux is the sole connection between the large scales
governing the flow and the small dissipative scales. The dissipation
energy is then estimated by computing the energy flux at the
resolved energy containing scales which are not influenced by
the specifics of the numerical scheme. The need to assess the
numerical dissipation in non-periodic domains has been addressed
by Schranner et al. [30]. Following the work of Domaradzki et al.
[11], Domaradzki and Radhakrishnan [10], Schranner et al. [30]
developed a methodology that allows for the quantification of
the numerical dissipation for an arbitrary CFD code in a self consis-
tent way, i.e., using only information about the flow field provided
by the code being analyzed, viz., the solver can be treated as a black
box without the need to know the details of the implementation.
This numerical dissipation quantification tool provides a rigorous
method to judge a posteriori the quality of a given simulation
allowing for an impartial assessment of the impact of the numeri-
cal dissipation. In the work reported in this paper we apply this lat-
ter methodology for the first time to a non-trivial flow
configuration solved using a commercial, low-order compressible
CFD code.

2. Equations

2.1. Analytical form

The transport energy equation for the compressible
Navier-Stokes (N-S) equations is
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where u; are the components of the velocity vector, p the pressure,
p the density and e the total energy per unit mass. The constitutive
relation between stress and strain rate for a Newtonian fluid is
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and the heat flux g; is defined as
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