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a b s t r a c t

A new algorithm for the computing of compressible flows governed by Euler/Navier–Stokes equations is
presented in this paper. The inter-cell numerical convective flux is estimated through a weighted combi-
nation of fourth order central/third order upwind biased/first order upwind interpolations of inter-cell
numerical fluid velocity and convective transport vector. The higher order/lower order interpolations
are carefully combined via two types of local solution sensitive weight functions. One of the weight func-
tions is designed to control the balance of upwind/central contributions via flow speeds while the other
one performs the dual purpose of detecting non-smooth or discontinuous features in the solution and
regulating the balance between the higher order and first order upwind interpolations. The present work,
through several one-dimensional (scalar and vector hyperbolic conservation laws) and
multi-dimensional (Euler/Navier–Stokes) test cases, demonstrates that a carefully designed flux-based
scheme can deliver a comparable performance in terms of robustness, accuracy and efficiency and is
much simple to implement in comparison to some of the popular wave based TVD schemes like Van
Leer and AUSMPW+ of Flux-Vector Splitting type and HLL scheme of Reconstruction-Evolution
(Godunov) type. Employing multi-dimensional test cases, it is shown that, the new scheme is very robust
and can be utilized for computing flows over a very wide range of flow speeds, ranging from incompress-
ible limit (Mach No. �0.1) to very high speed compressible flows (Mach No. �10).

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The presence of different types of discontinuities (shock waves,
contacts, slip lines) together with their interactions with bound-
ary/shear layers, vortices etc, poses a stiff challenge to the comput-
ing of compressible flows governed by Euler/Navier–Stokes
equations. The requirements for resolving the discontinuities with-
out any spurious oscillations or overshoots/undershoots and for
resolving the flow structures like boundary layers, vortices etc
are somewhat conflicting. The numerical scheme must possess suf-
ficient numerical diffusion to stably resolve the discontinuities and
yet not be overly diffusive to contaminate the viscous diffusion
inside boundary/shear layers and vortices etc. In the light of the
above, the design of a numerical scheme for the computing of com-
pressible flows is a challenging and formidable task. The physics of
compressible flows is dominated by propagation and interaction of
waves of several families (entropy, vorticity and acoustic family).
Therefore, it is generally believed that schemes that rely on the
wave dynamics would capture the flow physics of compressible
flows much better. This explains an almost one-sided effort in

the development of numerical schemes for the computing of com-
pressible flows. While much effort has been directed towards
development of schemes that utilize the wave dynamics in a com-
pressible flow, there has been little effort in the development of
schemes that simply rely on direct discretization of the conserva-
tion equations aiming to conserve the fluxes on a numerical grid.
The present work represents an effort in this direction.

1.1. Background and governing equations

The governing equations of an unsteady compressible flow
exhibit a Hyperbolic character and thus any scheme that aims to
resolve such a flow is built with the aid of one-dimensional model
scalar/vector hyperbolic equations like Linear Advection Equation
and Inviscid Burger’s Equation, herein after referred to as LAE
and IBE respectively, and canonical flows governed by Euler
Equations. The inviscid model problems play a special role in high-
lighting the resolving capabilities of any numerical scheme as far
as discontinuities are concerned. This is because, in the absence
of viscosity, the discontinuities appear as true discontinuities in
the solutions of the inviscid flow models and thus can only be sta-
bly resolved through numerical diffusion/artificial viscosity of the
scheme. The numerical solution of the inviscid flow models,
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therefore, clearly identify the effects of numerical diffusion/artifi-
cial viscosity and allows for limiting these effects in a numerical
scheme in order to achieve a desired resolving capability.

The numerical schemes for models represented by Hyperbolic
Conservation Laws are constructed using two distinct approaches:

(1) coupled space–time approach and,
(2) decoupled space–time approach.

In a typical coupled approach, the discretization errors are esti-
mated using the governing equation(s) themselves to achieve a
high order of accuracy in the numerical scheme. In other words,
the total truncation error, in time as well as in space is controlled.
A typical example is a one step, Lax-Wendroff family of schemes. In
contrast, in a decoupled space–time approach, the time integration
is performed using either first order Euler or a two-step predictor–
corrector or a multi-step RK method. The spatial discretization of
the flux in this class of methods is achieved via three distinct
approaches: (i) direct discretization using forward, backward or
central schemes or their combinations (flux-based approach),
(ii) flux-splitting followed by discretization (wave based
approach), (iii) solution reconstruction using piecewise interpola-
tion followed by solution of a cell based Riemann problem to esti-
mate the intercell flux (Reconstruction-evolution or Godunov
approach).

While the coupled space–time approach permits achieving very
high orders of accuracy for the 1D scalar hyperbolic conservation
laws, it is generally not possible to employ the Lax-Wendroff
approach to develop schemes having more than second order
accuracy for systems of hyperbolic equations representing
multi-dimensional scenarios [1]. A common feature in all the
methods (coupled or decoupled) is the presence of a shock/discon-
tinuity detection algorithm that permits to limit the flux in order to
minimize and control the oscillations/overshoots/undershoots in
the solution in the vicinity of a discontinuity.

In the past, much work has been done in the development of
shock capturing schemes employing the decoupled space–time
approach. Among these methods, the flux based methods are sim-
plest and easiest to implement. In these methods, the wave
dynamics is not exploited to estimate the fluxes and their deriva-
tives. Rather these are obtained by the direct discretization using
forward, backward or central schemes on a computational grid.
The most popular of such class of methods are Richtmyer and
MacCormack’s method [2]. These methods suffer from stability
and accuracy in the presence of strong shock. In fact, without the
addition of explicit artificial viscosity or damping terms, these
methods produce severe oscillations/overshoots or undershoot in
the vicinity of shocks.

The wave based methods carry out the spatial discretization of
the governing equations by taking into consideration the direction
and speed of the propagating family of waves [2–4]. The first-order
upwind methods require large enough artificial viscosity for
oscillation free solution in the vicinity of shocks. Due to this they
experience severe smearing of contact discontinuities and shocks
leading to reduced accuracy in smooth regions of the flow.
Higher-order upwind methods, yield accurate solution in the
smooth region but require explicit use of artificial viscosity or
flux-limiters to prevent spurious oscillations/overshoots/under
shoots in the vicinity of shocks or steep gradients in the solution.
Another feature associated with most Flux-Vector Splitting (FVS)
type methods is the difficulty experienced at the sonic points.

Another class of decoupled space–time wave based schemes are
the Reconstruction-Evolution methods. As the name suggests,
these methods approximate or reconstruct the solution at a given
time instant by using piecewise polynomial approximations over
each cell. The polynomial approximation is done in a manner that

yields jump discontinuities at the cell interfaces. In order to evolve
the solution in time, the discontinuity across the cell interface is
regarded as localized Riemann problem between the two nodes
across the cell interface. The Reconstruction-Evolution methods
have excellent resolution capabilities of shocks and contacts dis-
continuities as they build up the solution from the solution of
the localized Riemann problems. However, higher order methods
require the use of limiters to stabilize the solution in the neighbor-
hood of steep gradients. The main limitation of these classes of
methods is large computational cost associated with the solution
of large number of Riemann problems at each time step.

Another class of methods are essentially solution-sensitive TVD
methods. These are methods that try to blend the basic methods of
one family (wave-based or flux-based) described above where the
exact amount of blending varies from place to place based on
solution features such as shocks. The basic idea is to achieve
best results both in smooth regions and in the regions of large
gradients. The works of Van-Leer [5], Sweby [6] and
Chakravarthy-Osher [7] can be regarded as major pioneering
efforts in the development of TVD methods. These schemes vary
in their complexity and level of sophistication to meet the conflict-
ing requirement for the resolution of the discontinuities as well as
the smooth flow features.

Much effort has been directed at development of accurate and
robust wave-based numerical schemes for the computing of com-
pressible flows resulting in popular family of schemes like AUSM
[8,9], Roe [10] and HLL [11] schemes.

The ENO/WENO schemes are perhaps the most sophisticated
among the latest flux-based schemes belonging to the class of
TVD shock capturing methods [12–14]. The essential idea is to
combine several lower order stencils using suitable local weights
so as to obtain a locally higher order approximation to the numer-
ical flux. However, these ENO/WENO schemes were found to be too
complex and costly to implement in a practical multi-dimensional
computing scenario as reported in [15]. A Weighted Compact
Scheme (WCS) employing weighted (convex) combination of sev-
eral compact implicit derivative approximations was reported in
[16]. However, the scheme did not perform well for Euler test cases
with shocks as a result of global dependency introduced via impli-
cit nature of derivative approximations. Recently, a Modified
Weighted Compact Scheme that essentially involves a weighted
combination of WENO and WCS schemes is reported in [17]. The
basic idea is to improve upon the shock resolution capabilities of
WCS scheme and retain the high order in the smooth regions of
the solution. In order to reduce the computational costs/overheads,
global weights based on pressure and density only were employed
for the WENO and WCS schemes. However, the choice of global
weights reduces the accuracy in the smooth regions. In addition,
far too many weight and mixing/blending functions with adjusta-
ble parameters are introduced that are difficult to optimize from
problem to problem.

Among the more recent efforts towards the development of
high accuracy schemes for both incompressible and compressible
flows, the pioneering efforts of Sengupta et al. [18–20] are worth
mentioning. For compressible flows governed by Euler/Navier–
Stokes equations the basic approach of flux-vector splitting based
on eigenvalues/eigenvectors of the inviscid flux jacobians was
retained to represent the flow physics. Employing compact
schemes with free parameters for spatial discretization, they have
shown that the free parameters can be adjusted to yield optimal
numerical properties like spectral accuracy, stability and disper-
sion relation preservation (DRP property) for model equations like
the linear advection equation (LAE). Since the compact schemes
introduce global dependencies they are likely to generate spurious
oscillations/overshoots/undershoots, a feature known popularly as
Gibbs’ phenomenon, in the neighborhood of shocks in handling a
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