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a b s t r a c t

A robust immersed boundary method for semi-implicit discretizations of the Navier–Stokes equations on
curvilinear grids is presented. No-slip conditions are enforced via momentum forcing, and mass conser-
vation at the immersed boundary is satisfied via a mass source term developed for moving bodies. The
errors associated with an explicit evaluation of the momentum forcing are analysed, and their influence
on the stability of the underlying Navier–Stokes solver is examined. An iterative approach to compute the
forcing term implicitly is proposed, which reduces the errors at the boundary and retains the stability
guarantees of the original semi-implicit discretization of the Navier–Stokes equations. The implementa-
tion in generalized curvilinear coordinates and the treatment of moving boundaries are presented, fol-
lowed by a number of test cases. The tests include stationary and moving boundaries and curvilinear
grid problems (decaying vortex problem, stationary cylinder, flow in 90� bend in circular duct and oscil-
lating cylinder in fluid at rest).

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Immersed boundary (IB) methods have become an established
approach for modelling complex and moving geometries. The main
advantage and the popularity of these methods are due to their
simplicity and efficiency. Unlike body-conforming methods which
require a body-fitted grid and remeshing in moving boundary
problems, a structured Cartesian grid is adopted for the IB method.
The effect of the body surface is included through the addition of
boundary forces in the Navier–Stokes equations. Use of structured
grids greatly simplifies the task of grid generation, particularly for
moving bodies and leads to more efficient computational algo-
rithms with better convergence and stability properties. The pre-
sent work focuses on the use of IB in the context of semi-implicit
Navier–Stokes solvers, which are commonly adopted in simula-
tions of moderate- and high-Reynolds number flows.

IB methods can be grouped into continuous forcing and discrete
forcing approaches [1]. The first immersed boundary method was
developed by Peskin [2] and was applied to elastic boundaries
moved by the fluid. Modifications to this approach for use with
rigid boundaries were proposed by Beyer and Leveque [3] and

Goldstein et al. [4] and employed feedback forcing to drive the
velocity at the boundary to rest. However, these methods
produced spurious oscillations and were subject to severe stability
constraints. Another drawback of continuous forcing methods is
the fact that a sharp representation of the boundary cannot
be obtained since smoothing functions are used to transmit the
forcing to the fluid, effectively spreading the location of the
boundary. This is undesirable, especially when modelling
high-Reynolds-number flows in which thin boundary layers need
to be resolved accurately.

Mohd-Yusof [5] proposed a discrete derivation of the forcing
term, in what is now commonly referred to as direct forcing.
Other discrete forcing approaches exist, such as immersed inter-
face methods (IIM) and Cartesian grid methods. However, the
direct forcing approach remains most popular due to its simplicity
and enhanced stability compared to other immersed boundary
methods. Many variants of direct forcing methods have therefore
appeared in the literature [6–13] and have been implemented in
the framework of the fractional step algorithm which is commonly
employed for solving the Navier–Stokes equations [7–9,14].

The accuracy and stability of direct forcing approaches used in
conjunction with fractional step depend on the formulation of
the fractional-step method, the computation of the forcing term
and the treatment of mass conservation at the boundary. The
two implementations of the fractional step method, referred to
as the p-form, which neglects the pressure term in the
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intermediate velocity equation, and the Dp-form, which includes
the pressure term from the previous time step, are both used
extensively. However, only IB conditions applied in conjunction
with the Dp-form are second-order accurate in time, whereas the
p-form is only first-order accurate. The computation of the forcing
term should be viewed relative to the temporal discretization of
the governing equations. Explicit schemes for the solution of the
Navier–Stokes equations are straightforward to implement, how-
ever they are limited by the viscous stability constraint.
Therefore, most fractional step methods apply a semi-implicit
approach where the diffusive terms are treated implicitly – these
are the focus of the present work. In this context, implicit evalua-
tion of the IB forcing term is not straightforward unless a simplified
interpolation is adopted, for example the one used by Fadlun et al.
[7]. Kim et al. [8] proposed an alternate approach where they pro-
visionally advance the velocity field explicitly in order to compute
the forcing term and then add it to the semi-implicit momentum
equations. Their method has a clear advantage in terms of algorith-
mic efficiency. However, this approach can potentially reduce the
stability limit of the numerical scheme due to the mismatch in
the temporal discretization of the IB forcing and the governing
equations.

In the present study, the errors in the computation of the forc-
ing term are analysed and a stable second-order accurate direct
forcing method is proposed. The current method consists of an iter-
ative approach which decreases the errors at the boundary and
enhances stability. The proposed method has been developed for
use in a generalized curvilinear system allowing a wide range of
complex geometries to be modelled efficiently on structured grids.
The treatment of moving boundaries is also presented for com-
pleteness, and builds on the recent literature.

Sharp-interface IB methods are known to suffer from spurious
force oscillations (SFOs) in moving body problems [15–20]. Lee
et al. [18] identified two main sources of spurious oscillations: (i)
The first source is the temporal discontinuity in the velocity which
arises as a point from the fluid becomes solid and its velocity is
suddenly changed to satisfy the no-slip condition at the IB. (ii)
The second source is the spatial discontinuity in the pressure field
which arises due to the momentum forcing and which contami-
nates the fluid field when a point from the solid becomes fluid.
Seo and Mittal [19] found the major source of oscillations to be
the violation of mass conservation near the immersed boundary.
In order to suppress spurious oscillations, Yang and Balaras [16]
proposed a field-extension approach in which the pressure and
velocity at solid points becoming fluid were extrapolated from
the surrounding fluid. Uhlmann [15] combined the direct forcing
approach at Lagrangian points with discrete delta functions [2].
Lee et al. [18] showed that the addition of a mass source/sink
inside the solid equally suppressed the SFOs, and Seo and Mittal
[19] applied a cut-cell method to improve local mass conservation
and reduce spurious oscillations. In the present method, an exten-
sion of the mass source term by Kim et al. [8] for use with moving
boundaries is applied. Recently, a similar method applied to cells
cut by the boundary was presented by Lee and You [20], and the
differences will be discussed.

In summary, the stability of explicit and implicit forcing meth-
ods in the semi-implicit discretization of the Navier–Stokes equa-
tions is examined. An iterative implicit scheme is proposed,
which is shown to have favourable stability properties. The method
is capable of handling complex geometries on curvilinear grids and
moving body problems. The paper is organized as follows: In
Section 2, the governing equations and discretization scheme are
presented. The accuracy of the IB boundary conditions in the frac-
tion step method is discussed. In Section 3, the stability of explicit
and implicit forcing methods is examined. An error analysis of
explicit forcing methods is performed and the proposed implicit

forcing approach is then presented. The stability of both methods
is studied for flow over a stationary cylinder. The implementation
of the immersed boundary conditions, the modifications required
for extension onto curvilinear coordinates, and the treatment of
moving boundaries are described in Section 4. In Section 5, numer-
ical tests which validate the accuracy of the method are presented.
Finally in Section 6, some conclusions are drawn.

2. Governing equations and semi-implicit discretization

In order to satisfy both the no-slip and no-penetration condi-
tions at the immersed boundary, a momentum forcing, f i, and a
mass source term, q, are applied to the Navier–Stokes equations,
similar to the method by Kim et al. [8]. The forcing term sets the
velocity at points surrounding the boundary, which are referred
to as IB points, to a particular value such that the velocity at the
surface of the immersed body satisfies the boundary conditions.
Cells containing the immersed boundary do not satisfy mass con-
servation without appropriate treatment. Therefore a mass source
is added in order to ensure that mass is conserved [8].

The governing equations for unsteady incompressible flow are
the momentum and continuity equations given below
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where xi are the Cartesian coordinates, ui are the corresponding
velocities, p is the pressure, f i are the momentum forcing compo-
nents and q is the mass source term. The flow equations are solved
on a staggered curvilinear grid using a volume flux formulation
[21]. The equations are spatially discretized by a second-order
finite-volume scheme and advanced in time with a second-order
semi-implicit fractional step method that uses Adams–Bashforth
for the convective terms and Crank–Nicolson for the diffusive
terms. The flow solver has been extensively validated and adopted
in direct numerical simulations of transitional and turbulent flows
[22–24].

A number of approaches can be adopted for transformation of
the governing equations from Cartesian to curvilinear coordinates,
each with different methods of discretization, choice of dependent
variables and grid layouts. For example, Cartesian velocities, con-
travariant velocities or volume fluxes, could be chosen as the
dependent variables. While volume fluxes are used in our work,
for generality and in keeping with the literature on IB methods,
the discretized equations will be shown in Cartesian coordinates.
Extension of the direct forcing method to curvilinear grids is inde-
pendent of the coordinate transformation used and will be dis-
cussed in Section 4.1.

The fractional step method decouples the solution of the
momentum equations (Eq. (1)) from that of the continuity equa-
tion (Eq. (2)) by solving them separately in two steps. An interme-
diate velocity field which is not divergence-free is computed first
and subsequently corrected with a pseudo-pressure, /, such that
continuity is satisfied.

The discretized equations are given by
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